Suppr超能文献

基于 TI-RADS 的甲状腺结节诊断多任务网络。

Multitask network for thyroid nodule diagnosis based on TI-RADS.

机构信息

College of Data Science, Taiyuan University of Technology, Taiyuan, China.

Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.

出版信息

Med Phys. 2022 Aug;49(8):5064-5080. doi: 10.1002/mp.15724. Epub 2022 Jun 14.

Abstract

PURPOSE

Assessment of thyroid nodules is usually relied on the experience of the radiologist and is time-consuming. Classification model of thyroid nodules cannot only reduce the burden on physicians but also provide objective recommendations. However, most classification models based on deep learning simply give a prediction result of the benignity or malignancy of nodules; thus, physicians have no way of knowing how the deep learning gets the prediction result due to the black-box nature of neural networks. In this work, we integrate the explainability directly into the outputs generated by the model through combining thyroid imaging reporting and data system (TI-RADS). The inference process of the proposed method is consistent with doctor's clinical diagnosis process; therefore, doctors can better explain the diagnosis results of the model to the patient.

METHODS

A multitask network based on TI-RADS (MTN-TI-RADS) for the classification of thyroid nodules is proposed. In this network, a set of TI-RADS classifications of nodules is first obtained by multitask learning, then the TI-RADS points and the corresponding risk levels are calculated, and finally, nodules are classified as benign and malignant. The classification process through the network is consistent with the diagnostic process of physician; thus, the results of classification can be easily understood by physicians. In addition, the attention modules are introduced to the spatial and channel domains to let the network focus more on critical features.

RESULTS

To verify the classification performance of our method, we compared the results obtained through our method with the results of the radiologist's evaluation. For the 781 test nodules in the internal dataset and the 886 test nodules in the external dataset, the sensitivity and specificity of MTN-TI-RADS were 0.988, 0.912 in internal dataset, 0.949, 0.930 in external dataset, versus the senior radiologist of 0.925 ( ), 0.816 ( ), and 0.910 ( ), 0.836 ( ), respectively. And the area under the receiver operating characteristic curve of MTN-TI-RADS was 0.981 in internal dataset, 0.973 in external dataset, versus the senior radiologist of 0.905, 0.923. For the internal dataset, we also computed the accuracy of the risk level (TR1 to TR5) and the mean absolute error (MAE). The accuracy of the risk level of the proposed method is 78%, and the MAE is 1.30. The MAE of the total points (0-14 points) is 1.30.

CONCLUSIONS

An effective and result-interpretable end-to-end thyroid nodule classification network (MTN-TI-RADS) is proposed. MTN-TI-RADS has superior ability to classify malignant and benign thyroid nodules compared to senior radiologists. Based on MTN-TI-RADS, a classification model with strong interpretation and a high degree of physician trust is constructed. The proposed classification network is consistent with the diagnosis process of physicians, thus is more reliable and interpretable, and has great potential for clinical application.

摘要

目的

甲状腺结节的评估通常依赖于放射科医生的经验,并且非常耗时。甲状腺结节分类模型不仅可以减轻医生的负担,还可以提供客观的建议。然而,大多数基于深度学习的分类模型只是给出了结节良恶性的预测结果;因此,由于神经网络的黑盒性质,医生无法知道深度学习是如何得出预测结果的。在这项工作中,我们通过结合甲状腺影像报告和数据系统(TI-RADS),直接将可解释性集成到模型生成的输出中。该方法的推理过程与医生的临床诊断过程一致;因此,医生可以更好地向患者解释模型的诊断结果。

方法

提出了一种基于 TI-RADS 的甲状腺结节分类的多任务网络(MTN-TI-RADS)。在这个网络中,首先通过多任务学习得到一组甲状腺结节的 TI-RADS 分类,然后计算 TI-RADS 点和相应的风险级别,最后将结节分类为良性和恶性。通过网络的分类过程与医生的诊断过程一致;因此,医生可以很容易地理解分类结果。此外,在空间和通道域引入注意力模块,使网络更加关注关键特征。

结果

为了验证我们方法的分类性能,我们将通过我们的方法得到的结果与放射科医生的评估结果进行了比较。对于内部数据集的 781 个测试结节和外部数据集的 886 个测试结节,MTN-TI-RADS 的灵敏度和特异性分别为 0.988、0.912 内部数据集,0.949、0.930 外部数据集,与高级放射科医生的 0.925( )、0.816( )和 0.910( )、0.836( )相比。MTN-TI-RADS 的内部数据集的受试者工作特征曲线下面积为 0.981,外部数据集为 0.973,与高级放射科医生的 0.905、0.923 相比。对于内部数据集,我们还计算了风险级别(TR1 到 TR5)和平均绝对误差(MAE)的准确性。该方法的风险级别准确性为 78%,平均绝对误差为 1.30。总点数(0-14 点)的平均绝对误差为 1.30。

结论

提出了一种有效的、可解释的端到端甲状腺结节分类网络(MTN-TI-RADS)。MTN-TI-RADS 具有比高级放射科医生更强的分类良恶性甲状腺结节的能力。基于 MTN-TI-RADS,构建了一个具有较强解释能力和高度医师信任度的分类模型。所提出的分类网络与医生的诊断过程一致,因此更加可靠和可解释,具有很大的临床应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验