Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States of America.
Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States of America.
Mol Genet Metab. 2022 May;136(1):38-45. doi: 10.1016/j.ymgme.2022.03.004. Epub 2022 Mar 18.
Classical phenylketonuria (PKU, OMIM 261600) owes to hepatic deficiency of phenylalanine hydroxylase (PAH) that enzymatically converts phenylalanine (Phe) to tyrosine (Tyr). PKU neurologic phenotypes include impaired brain development, decreased myelination, early onset mental retardation, seizures, and late-onset features (neuropsychiatric, Parkinsonism). Phe over-representation is systemic; however, tissue response to hyperphenylalaninemia is not consistent. To characterize hyperphenylalaninemia tissue response, metabolomics was applied to Pah classical PKU mouse blood, liver, and brain. In blood and liver over-represented analytes were principally Phe, Phe catabolites, and Phe-related analytes (Phe-conjugates, Phe-containing dipeptides). In addition to Phe and Phe-related analytes, the metabolomic profile of Pah brain tissue evidenced oxidative stress responses and energy dysregulation. Glutathione and homocarnosine anti-oxidative responses are apparent Pah brain. Oxidative stress in Pah brain was further evidenced by increased reactive oxygen species. Pah brain presents an increased NADH/NAD ratio suggesting respiratory chain complex 1 dysfunction. Respirometry in Pah brain mitochondria functionally confirmed reduced respiratory chain activity with an attenuated response to pyruvate substrate. Glycolysis pathway analytes are over-represented in Pah brain tissue. PKU pathologies owe to liver metabolic deficiency; yet, Pah liver tissue shows neither energy disruption nor anti-oxidative response. Unique aspects of metabolomic homeostasis in PKU brain tissue along with increased reactive oxygen species and respiratory chain deficit provide insight to neurologic disease mechanisms. While some elements of assumed, long standing PKU neuropathology are enforced by metabolomic data (e.g. reduced tryptophan and serotonin representation), energy dysregulation and tissue oxidative stress expand mechanisms underlying neuropathology.
经典苯丙酮尿症(PKU,OMIM 261600)归因于肝内苯丙氨酸羟化酶(PAH)缺乏,该酶可将苯丙氨酸(Phe)转化为酪氨酸(Tyr)。PKU 的神经表型包括脑发育受损、髓鞘形成减少、早发性智力低下、癫痫发作和迟发性特征(神经精神、帕金森病)。高苯丙氨酸血症是全身性的;然而,组织对高苯丙氨酸血症的反应并不一致。为了描述高苯丙氨酸血症的组织反应,代谢组学被应用于经典 PKU 小鼠的血液、肝脏和大脑。在血液和肝脏中,过量的分析物主要是 Phe、Phe 代谢物和与 Phe 相关的分析物(Phe 结合物、含 Phe 的二肽)。除了 Phe 和与 Phe 相关的分析物外,Pah 脑组织的代谢组学特征还表明存在氧化应激反应和能量失调。谷胱甘肽和同型瓜氨酸的抗氧化反应在 Pah 脑中很明显。氧化应激在 Pah 脑中进一步表现为活性氧的增加。Pah 脑中 NADH/NAD 比值增加表明呼吸链复合物 1 功能障碍。Pah 脑线粒体呼吸测定法在功能上证实了呼吸链活性降低,对丙酮酸底物的反应减弱。糖酵解途径分析物在 Pah 脑组织中过量表达。PKU 病理归因于肝脏代谢缺陷;然而,Pah 肝组织既没有能量紊乱,也没有抗氧化反应。PKU 脑组织代谢组学稳态的独特方面,以及活性氧增加和呼吸链缺陷,为神经疾病机制提供了新的见解。虽然一些假设的、长期存在的 PKU 神经病理学的元素被代谢组学数据所证实(例如,色氨酸和血清素的表达减少),但能量失调和组织氧化应激扩展了神经病理学的机制。