Suppr超能文献

经典型苯丙酮尿症 Pah 模型中的骨矿化缺陷涉及间充质干细胞分化受损。

A bone mineralization defect in the Pah model of classical phenylketonuria involves compromised mesenchymal stem cell differentiation.

机构信息

Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.

Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.

出版信息

Mol Genet Metab. 2018 Nov;125(3):193-199. doi: 10.1016/j.ymgme.2018.08.010. Epub 2018 Aug 27.

Abstract

Osteopenia is observed in some patients affected by phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU). Bone density studies, in diverse PKU patient cohorts, have demonstrated bone disease is neither fully penetrant nor uniform in bone density loss. Biochemical assessment has generated a muddled perspective regarding mechanisms of the PKU bone phenotype where the participation of hyperphenylalaninemia remains unresolved. Osteopenia is realized in the Pah mouse model of classical PKU; although, characterization is incomplete. We characterized the Pah bone phenotype and assessed the effect of hyperphenylalaninemia on bone differentiation. Employing Pah and control animals, cytology, static and dynamic histomorphometry, and biochemistry were applied to further characterize the bone phenotype. These investigations demonstrate Pah bone density is decreased 33% relative to C57BL/6; bone volume/total volume was similarly decreased; trabecular thickness was unchanged while increased trabecular spacing was observed. Dynamic histomorphometry demonstrated a 25% decrease in mineral apposition. Biochemically, control and PKU animals have similar plasma cortisol, adrenocorticotropic hormone, and 25-hydroxyvitamin D. PKU animals show moderately increased plasma parathyroid hormone while plasma calcium and phosphate are reduced. These data are consistent with a mineralization defect. The effect of hyperphenylalaninemia on bone maturation was assessed in vitro employing bone-derived mesenchymal stem cells (MSCs) and their differentiation into bone. Using standard culture conditions, PAH deficient MSCs differentiate into bone as assessed by in situ alkaline phosphatase activity and mineral staining. However, PAH deficient MSCs cultured in 1200 μM PHE (metric defining classical PKU) show significantly reduced mineralization. These data are the first biological evidence demonstrating a negative impact of hyperphenylalaninemia upon bone maturation. In PAH deficient MSCs, expression of Col1A1 and Rankl are suppressed by hyperphenylalaninemia consistent with reduced bone formation and bone turnover. Osteopenia is intrinsic to PKU pathology in untreated Pah animals and our data suggests PHE toxicity participates by inhibiting mineralization in the course of MSC bone differentiation.

摘要

骨质疏松症在一些患有苯丙氨酸羟化酶(PAH)缺乏型苯丙酮尿症(PKU)的患者中观察到。在不同的 PKU 患者队列中进行的骨密度研究表明,骨病既不完全穿透,也不均匀地丧失骨密度。生化评估对 PKU 骨表型的机制产生了混淆,其中高苯丙氨酸血症的参与仍未解决。骨质疏松症在经典 PKU 的 Pah 小鼠模型中表现出来;然而,其特征尚未完全确定。我们对 Pah 骨表型进行了特征描述,并评估了高苯丙氨酸血症对骨分化的影响。利用 Pah 和对照动物,细胞学、静态和动态组织形态计量学以及生物化学被用于进一步描述骨表型。这些研究表明,与 C57BL/6 相比,Pah 骨密度降低了 33%;骨体积/总体积也相应降低;小梁厚度不变,而观察到小梁间隔增加。动态组织形态计量学显示,矿化率降低了 25%。生化分析表明,对照和 PKU 动物的血浆皮质醇、促肾上腺皮质激素和 25-羟维生素 D 相似。PKU 动物表现出中等程度的甲状旁腺激素升高,而血浆钙和磷降低。这些数据与矿化缺陷一致。在体外利用骨源性间充质干细胞(MSCs)及其向骨的分化来评估高苯丙氨酸血症对骨成熟的影响。使用标准培养条件,PAH 缺陷型 MSCs 分化为骨,通过原位碱性磷酸酶活性和矿化染色来评估。然而,在 1200µM PHE(定义经典 PKU 的量度)中培养的 PAH 缺陷型 MSCs 矿化明显减少。这些数据是首次表明高苯丙氨酸血症对骨成熟有负面影响的生物学证据。在 PAH 缺陷型 MSCs 中,Col1A1 和 Rankl 的表达受高苯丙氨酸血症抑制,这与骨形成和骨转换减少一致。在未经治疗的 Pah 动物中,骨质疏松症是 PKU 病理的内在特征,我们的数据表明,PHE 毒性通过抑制 MSC 骨分化过程中的矿化参与其中。

相似文献

1
A bone mineralization defect in the Pah model of classical phenylketonuria involves compromised mesenchymal stem cell differentiation.
Mol Genet Metab. 2018 Nov;125(3):193-199. doi: 10.1016/j.ymgme.2018.08.010. Epub 2018 Aug 27.
2
Mesenchymal stem cell energy deficit and oxidative stress contribute to osteopenia in the Pah classical PKU mouse.
Mol Genet Metab. 2021 Mar;132(3):173-179. doi: 10.1016/j.ymgme.2021.01.014. Epub 2021 Feb 11.
4
DNA methylation in the pathophysiology of hyperphenylalaninemia in the PAH(enu2) mouse model of phenylketonuria.
Mol Genet Metab. 2016 Sep;119(1-2):1-7. doi: 10.1016/j.ymgme.2016.01.001. Epub 2016 Jan 14.
5
Comparative metabolomics in the Pah classical PKU mouse identifies cerebral energy pathway disruption and oxidative stress.
Mol Genet Metab. 2022 May;136(1):38-45. doi: 10.1016/j.ymgme.2022.03.004. Epub 2022 Mar 18.
6
Creatine energy substrate increases bone density in the Pah classical PKU mouse in the context of phenylalanine restriction.
Mol Genet Metab Rep. 2023 Aug 6;36:100996. doi: 10.1016/j.ymgmr.2023.100996. eCollection 2023 Sep.
7
A New View of Bone Loss in Phenylketonuria.
Organogenesis. 2021 Oct 2;17(3-4):50-55. doi: 10.1080/15476278.2021.1949865. Epub 2021 Aug 25.
10
A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing.
JCI Insight. 2020 Oct 15;5(20):141523. doi: 10.1172/jci.insight.141523.

引用本文的文献

2
Ameliorates Oxidative Stress in Nucleus Pulposus Cells via Downregulating the TNF-α Signaling Pathway.
Pharmaceuticals (Basel). 2023 Oct 17;16(10):1482. doi: 10.3390/ph16101482.
3
Creatine energy substrate increases bone density in the Pah classical PKU mouse in the context of phenylalanine restriction.
Mol Genet Metab Rep. 2023 Aug 6;36:100996. doi: 10.1016/j.ymgmr.2023.100996. eCollection 2023 Sep.
7
Phenylketonuria oxidative stress and energy dysregulation: Emerging pathophysiological elements provide interventional opportunity.
Mol Genet Metab. 2022 Jun;136(2):111-117. doi: 10.1016/j.ymgme.2022.03.012. Epub 2022 Mar 29.
9
A New View of Bone Loss in Phenylketonuria.
Organogenesis. 2021 Oct 2;17(3-4):50-55. doi: 10.1080/15476278.2021.1949865. Epub 2021 Aug 25.

本文引用的文献

1
Treatment adherence during childhood in individuals with phenylketonuria: Early signs of treatment discontinuation.
Mol Genet Metab Rep. 2017 Apr 28;11:54-58. doi: 10.1016/j.ymgmr.2017.04.006. eCollection 2017 Jun.
2
Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria.
PLoS One. 2017 Mar 10;12(3):e0173269. doi: 10.1371/journal.pone.0173269. eCollection 2017.
3
Apolipoprotein A-1 regulates osteoblast and lipoblast precursor cells in mice.
Lab Invest. 2016 Jul;96(7):763-72. doi: 10.1038/labinvest.2016.51. Epub 2016 Apr 18.
4
Long-term BH4 (sapropterin) treatment of children with hyperphenylalaninemia - effect on median Phe/Tyr ratios.
J Pediatr Endocrinol Metab. 2016 May 1;29(5):561-6. doi: 10.1515/jpem-2015-0337.
5
Modeling correlates of low bone mineral density in patients with phenylalanine hydroxylase deficiency.
J Inherit Metab Dis. 2016 May;39(3):363-372. doi: 10.1007/s10545-015-9910-0. Epub 2016 Feb 16.
6
Phenylketonuria: a review of current and future treatments.
Transl Pediatr. 2015 Oct;4(4):304-17. doi: 10.3978/j.issn.2224-4336.2015.10.07.
8
Bone health in phenylketonuria: a systematic review and meta-analysis.
Orphanet J Rare Dis. 2015 Feb 15;10:17. doi: 10.1186/s13023-015-0232-y.
9
Long-term safety and efficacy of sapropterin: the PKUDOS registry experience.
Mol Genet Metab. 2015 Apr;114(4):557-63. doi: 10.1016/j.ymgme.2015.02.003. Epub 2015 Feb 16.
10
A systematic review of bone mineral density and fractures in phenylketonuria.
J Inherit Metab Dis. 2014 Nov;37(6):875-80. doi: 10.1007/s10545-014-9735-2. Epub 2014 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验