Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA.
Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
J Biol Chem. 2022 May;298(5):101886. doi: 10.1016/j.jbc.2022.101886. Epub 2022 Mar 31.
Phospholipase C-γ1 (PLC-γ1) is a receptor-proximal enzyme that promotes signal transduction through PKC in mammalian cells. Because of the complexity of PLC-γ1 regulation, a two-state (inactive/active) model does not account for the intricacy of activation and inactivation steps at the plasma membrane. Here, we introduce a structure-based kinetic model of PLC-γ1, considering interactions of its regulatory Src homology 2 (SH2) domains and perturbation of those dynamics upon phosphorylation of Tyr783, a hallmark of activation. For PLC-γ1 phosphorylation to dramatically enhance enzyme activation as observed, we found that high intramolecular affinity of the C-terminal SH2 (cSH2) domain-pTyr783 interaction is critical, but this affinity need not outcompete the autoinhibitory interaction of the cSH2 domain. Under conditions for which steady-state PLC-γ1 activity is sensitive to the rate of Tyr783 phosphorylation, maintenance of the active state is surprisingly insensitive to the phosphorylation rate, since pTyr783 is well protected by the cSH2 domain while the enzyme is active. In contrast, maintenance of enzyme activity is sensitive to the rate of PLC-γ1 membrane (re)binding. Accordingly, we found that hypothetical PLC-γ1 mutations that either weaken autoinhibition or strengthen membrane binding influence the activation kinetics differently, which could inform the characterization of oncogenic variants. Finally, we used this newly informed kinetic scheme to refine a spatial model of PLC/PKC polarization during chemotaxis. The refined model showed improved stability of the polarized pattern while corroborating previous qualitative predictions. As demonstrated here for PLC-γ1, this approach may be adapted to model the dynamics of other receptor- and membrane-proximal enzymes.
PLC-γ1(磷脂酶 C-γ1)是一种位于受体近端的酶,可在哺乳动物细胞中通过 PKC 促进信号转导。由于 PLC-γ1 的调控非常复杂,因此二态(非激活/激活)模型无法解释质膜上激活和失活步骤的复杂性。在这里,我们引入了一种基于结构的 PLC-γ1 动力学模型,考虑了其调节Src 同源结构域 2(SH2)的相互作用,以及 Tyr783 磷酸化对这些动力学的干扰,这是激活的标志。为了使 PLC-γ1 的磷酸化能够显著增强酶的激活,正如观察到的那样,我们发现 C 末端 SH2(cSH2)域-pTyr783 相互作用的高分子内亲和力是关键,但这种亲和力不必与 cSH2 域的自身抑制相互作用竞争。在 PLC-γ1 活性对 Tyr783 磷酸化速率敏感的条件下,由于 cSH2 结构域对 pTyr783 的保护作用,酶处于活性状态时,活性状态的维持对磷酸化速率的惊人不敏感。相比之下,酶活性的维持对 PLC-γ1 膜(再)结合的速率敏感。因此,我们发现,假设的 PLC-γ1 突变,无论是削弱自身抑制还是增强膜结合,都会以不同的方式影响激活动力学,这可能为致癌变体的特征提供信息。最后,我们使用这个新的信息动力学方案来改进趋化作用过程中 PLC/PKC 极化的空间模型。改进后的模型显示出极化模式的稳定性有所提高,同时也证实了之前的定性预测。如这里对 PLC-γ1 所示,这种方法可以适用于模拟其他受体和质膜近端酶的动力学。