Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, United States of America.
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.
PLoS Comput Biol. 2020 Apr 7;16(4):e1007708. doi: 10.1371/journal.pcbi.1007708. eCollection 2020 Apr.
Chemotaxis of fibroblasts and other mesenchymal cells is critical for embryonic development and wound healing. Fibroblast chemotaxis directed by a gradient of platelet-derived growth factor (PDGF) requires signaling through the phospholipase C (PLC)/protein kinase C (PKC) pathway. Diacylglycerol (DAG), the lipid product of PLC that activates conventional PKCs, is focally enriched at the up-gradient leading edge of fibroblasts responding to a shallow gradient of PDGF, signifying polarization. To explain the underlying mechanisms, we formulated reaction-diffusion models including as many as three putative feedback loops based on known biochemistry. These include the previously analyzed mechanism of substrate-buffering by myristoylated alanine-rich C kinase substrate (MARCKS) and two newly considered feedback loops involving the lipid, phosphatidic acid (PA). DAG kinases and phospholipase D, the enzymes that produce PA, are identified as key regulators in the models. Paradoxically, increasing DAG kinase activity can enhance the robustness of DAG/active PKC polarization with respect to chemoattractant concentration while decreasing their whole-cell levels. Finally, in simulations of wound invasion, efficient collective migration is achieved with thresholds for chemotaxis matching those of polarization in the reaction-diffusion models. This multi-scale modeling framework offers testable predictions to guide further study of signal transduction and cell behavior that affect mesenchymal chemotaxis.
成纤维细胞和其他间充质细胞的趋化作用对于胚胎发育和伤口愈合至关重要。血小板衍生生长因子 (PDGF) 梯度引导的成纤维细胞趋化作用需要通过磷脂酶 C (PLC)/蛋白激酶 C (PKC) 途径进行信号转导。二酰基甘油 (DAG) 是激活传统 PKC 的 PLC 的脂质产物,在响应 PDGF 浅梯度的成纤维细胞的上向主导前沿处局部富集,表明极化。为了解释潜在机制,我们基于已知的生物化学制定了反应-扩散模型,其中包括多达三个假定的反馈回路。这些包括先前分析的肉豆蔻酰化丙氨酸丰富的 C 激酶底物 (MARCKS) 的基质缓冲机制,以及两个新考虑的涉及脂质磷酸酰甘油 (PA) 的反馈回路。DAG 激酶和产生 PA 的磷脂酶 D 被确定为模型中的关键调节剂。矛盾的是,增加 DAG 激酶活性可以增强 DAG/活性 PKC 极化对趋化剂浓度的稳健性,同时降低它们的全细胞水平。最后,在伤口入侵的模拟中,通过匹配反应-扩散模型中极化的趋化性阈值来实现有效的集体迁移。这个多尺度建模框架提供了可测试的预测,以指导对影响间充质趋化性的信号转导和细胞行为的进一步研究。