Suppr超能文献

印度 640 个地区儿童营养不良的空间依赖性:需要有针对性的规划和干预。

Spatial dependency in child malnutrition across 640 districts in India: need for context-specific planning and interventions.

机构信息

Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Mumbai 400076, India.

Rural Data Research and Analysis (RuDRA) Lab, Indian Institute of Technology Bombay, Mumbai 400076, India.

出版信息

J Public Health (Oxf). 2023 Mar 14;45(1):267-273. doi: 10.1093/pubmed/fdac035.

Abstract

BACKGROUND

Child malnutrition remains a matter of concern in India as the current levels are high and the decline is slow. National Family Health Survey (NFHS-4, 2015-16) data, for the first time, provides credible, good quality data at district level on social, household and health characteristics.

METHODS

Techniques of spatial analysis on data in respect of 640 districts were used to identify spatial characteristics of the nutrition levels for children in the 0-60-month age group. Further, the principal component analysis (PCA) was used to identify 7 important correlates of the malnutrition out of 21 relevant components provided in the NFHS-4. The paper further uses three techniques, ordinary least squares (OLS), spatial lag model (SLM) and spatial error model (SEM) to assess the strength of correlation between the malnutrition levels and the shortlisted correlates.

RESULTS

The use of SLM and SEM shows improvement in the strength of the association (high R-square) compared to OLS. Women's height and Iodized salt in stunting, child anaemia in wasting, women's height and child anaemia in underweight were found to be significant factors (P < 0.01) along with spatial autoregressive constant.

CONCLUSIONS

Such analysis, in combination with PCA, has shown to be more effective in prioritizing the programme interventions for tackling child malnutrition.

摘要

背景

儿童营养不良在印度仍然是一个令人关注的问题,因为目前的水平仍然很高,而且下降速度缓慢。国家家庭健康调查(NFHS-4,2015-16)数据首次在地区一级提供了可信的、高质量的关于社会、家庭和健康特征的数据。

方法

利用空间分析技术对 640 个地区的数据进行分析,以确定 0-60 个月龄儿童营养水平的空间特征。此外,主成分分析(PCA)用于从 NFHS-4 中提供的 21 个相关成分中确定 7 个与营养不良相关的重要因素。本文进一步使用三种技术,即普通最小二乘法(OLS)、空间滞后模型(SLM)和空间误差模型(SEM),来评估营养不良水平与入选相关因素之间的相关性强度。

结果

与 OLS 相比,SLM 和 SEM 的使用提高了关联的强度(高 R 平方)。在 stunting 中,女性身高和加碘盐与 wasting 中的儿童贫血、underweight 中的女性身高和儿童贫血相关,这被认为是重要因素(P < 0.01),同时还有空间自回归常数。

结论

这种分析与 PCA 相结合,已被证明在确定针对儿童营养不良的方案干预措施方面更为有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验