Suppr超能文献

基于概率运动基元和控制障碍函数的安全机器人轨迹控制

Safe Robot Trajectory Control Using Probabilistic Movement Primitives and Control Barrier Functions.

作者信息

Davoodi Mohammadreza, Iqbal Asif, Cloud Joseph M, Beksi William J, Gans Nicholas R

机构信息

The University of Texas at Arlington Research Institute, Fort Worth, TX, United States.

Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, United States.

出版信息

Front Robot AI. 2022 Mar 16;9:772228. doi: 10.3389/frobt.2022.772228. eCollection 2022.

Abstract

In this paper, we present a novel means of control design for probabilistic movement primitives (ProMPs). Our proposed approach makes use of control barrier functions and control Lyapunov functions defined by a ProMP distribution. Thus, a robot may move along a trajectory within the distribution while guaranteeing that the system state never leaves more than a desired distance from the distribution mean. The control employs feedback linearization to handle nonlinearities in the system dynamics and real-time quadratic programming to ensure a solution exists that satisfies all safety constraints while minimizing control effort. Furthermore, we highlight how the proposed method may allow a designer to emphasize certain safety objectives that are more important than the others. A series of simulations and experiments demonstrate the efficacy of our approach and show it can run in real time.

摘要

在本文中,我们提出了一种用于概率运动基元(ProMPs)的新型控制设计方法。我们提出的方法利用了由ProMP分布定义的控制障碍函数和控制李雅普诺夫函数。因此,机器人可以在分布内沿着轨迹移动,同时保证系统状态与分布均值的距离不会超过期望距离。该控制采用反馈线性化来处理系统动力学中的非线性,并采用实时二次规划来确保存在满足所有安全约束同时最小化控制努力的解。此外,我们强调了所提出的方法如何使设计者能够强调某些比其他目标更重要的安全目标。一系列仿真和实验证明了我们方法的有效性,并表明它可以实时运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf7d/8965845/3ff9675fcb28/frobt-09-772228-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验