Davoodi Mohammadreza, Iqbal Asif, Cloud Joseph M, Beksi William J, Gans Nicholas R
The University of Texas at Arlington Research Institute, Fort Worth, TX, United States.
Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, United States.
Front Robot AI. 2022 Mar 16;9:772228. doi: 10.3389/frobt.2022.772228. eCollection 2022.
In this paper, we present a novel means of control design for probabilistic movement primitives (ProMPs). Our proposed approach makes use of control barrier functions and control Lyapunov functions defined by a ProMP distribution. Thus, a robot may move along a trajectory within the distribution while guaranteeing that the system state never leaves more than a desired distance from the distribution mean. The control employs feedback linearization to handle nonlinearities in the system dynamics and real-time quadratic programming to ensure a solution exists that satisfies all safety constraints while minimizing control effort. Furthermore, we highlight how the proposed method may allow a designer to emphasize certain safety objectives that are more important than the others. A series of simulations and experiments demonstrate the efficacy of our approach and show it can run in real time.
在本文中,我们提出了一种用于概率运动基元(ProMPs)的新型控制设计方法。我们提出的方法利用了由ProMP分布定义的控制障碍函数和控制李雅普诺夫函数。因此,机器人可以在分布内沿着轨迹移动,同时保证系统状态与分布均值的距离不会超过期望距离。该控制采用反馈线性化来处理系统动力学中的非线性,并采用实时二次规划来确保存在满足所有安全约束同时最小化控制努力的解。此外,我们强调了所提出的方法如何使设计者能够强调某些比其他目标更重要的安全目标。一系列仿真和实验证明了我们方法的有效性,并表明它可以实时运行。