Ganie Hilal A, Shang Yilun
Department of School Education, JK Govt. Kashmir, India.
Department of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, UK.
Heliyon. 2022 Mar 28;8(3):e09186. doi: 10.1016/j.heliyon.2022.e09186. eCollection 2022 Mar.
Let be a digraph of order and with arcs. The signless Laplacian matrix of is defined as , where is the adjacency matrix and is the diagonal matrix of vertex out-degrees of . Among the eigenvalues of the eigenvalue with largest modulus is the signless Laplacian spectral radius or the -spectral radius of . The main contribution of this paper is a series of new lower bounds for the -spectral radius in terms of the number of vertices , the number of arcs, the vertex out-degrees, the number of closed walks of length 2 of the digraph . We characterize the extremal digraphs attaining these bounds. Further, as applications we obtain some bounds for the signless Laplacian energy of a digraph and characterize the extremal digraphs for these bounds.
设 是一个阶数为 且有 条弧的有向图。 的无符号拉普拉斯矩阵 定义为 ,其中 是邻接矩阵, 是 的顶点出度对角矩阵。在 的特征值中,模最大的特征值是无符号拉普拉斯谱半径或 的 -谱半径。本文的主要贡献是根据有向图的顶点数 、弧数、顶点出度、长度为 2 的闭行走数给出了一系列关于 -谱半径的新下界。我们刻画了达到这些界的极图。此外,作为应用,我们得到了有向图 的无符号拉普拉斯能量的一些界,并刻画了这些界的极图。