Martínez-Martínez C T, Méndez-Bermúdez J A, Sigarreta José M
Facultad de Matemáticas, <a href="https://ror.org/054tbkd46">Universidad Autónoma de Guerrero</a>, Carlos E. Adame 5, Col. La Garita, Acapulco, Guerrero, Mexico.
Instituto de Física, <a href="https://ror.org/03p2z7827">Benemérita Universidad Autónoma de Puebla</a>, Puebla 72570, Mexico.
Phys Rev E. 2024 Jun;109(6-1):064306. doi: 10.1103/PhysRevE.109.064306.
We investigate some topological and spectral properties of Erdős-Rényi (ER) random digraphs of size n and connection probability p, D(n,p). In terms of topological properties, our primary focus lies in analyzing the number of nonisolated vertices V_{x}(D) as well as two vertex-degree-based topological indices: the Randić index R(D) and sum-connectivity index χ(D). First, by performing a scaling analysis, we show that the average degree 〈k〉 serves as a scaling parameter for the average values of V_{x}(D), R(D), and χ(D). Then, we also state expressions relating the number of arcs, largest eigenvalue, and closed walks of length 2 to (n,p), the parameters of ER random digraphs. Concerning spectral properties, we observe that the eigenvalue distribution converges to a circle of radius sqrt[np(1-p)]. Subsequently, we compute six different invariants related to the eigenvalues of D(n,p) and observe that these quantities also scale with sqrt[np(1-p)]. Additionally, we reformulate a set of bounds previously reported in the literature for these invariants as a function (n,p). Finally, we phenomenologically state relations between invariants that allow us to extend previously known bounds.
我们研究了大小为(n)且连接概率为(p)的厄多斯 - 雷尼(ER)随机有向图(D(n,p))的一些拓扑和谱性质。就拓扑性质而言,我们主要关注分析非孤立顶点的数量(V_{x}(D))以及两个基于顶点度的拓扑指标:兰迪奇指数(R(D))和和连通性指数(\chi(D))。首先,通过进行尺度分析,我们表明平均度(\langle k\rangle)作为(V_{x}(D))、(R(D))和(\chi(D))平均值的尺度参数。然后,我们还给出了与弧的数量、最大特征值以及长度为(2)的闭行走与((n,p))(ER随机有向图的参数)相关的表达式。关于谱性质,我们观察到特征值分布收敛到半径为(\sqrt{np(1 - p)})的圆。随后,我们计算了与(D(n,p))的特征值相关的六个不同不变量,并观察到这些量也与(\sqrt{np(1 - p)})成比例。此外,我们将文献中先前报道的这些不变量的一组界重新表述为关于((n,p))的函数。最后,我们从现象学角度阐述了不变量之间的关系,这使我们能够扩展先前已知的界。