Suppr超能文献

实验进化揭示氧化还原状态调节分枝杆菌致病性。

Experimental Evolution Reveals Redox State Modulates Mycobacterial Pathogenicity.

作者信息

Jiang Zheng, Zhuang Zengfang, Mi Kaixia

机构信息

CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Genet. 2022 Mar 16;13:758304. doi: 10.3389/fgene.2022.758304. eCollection 2022.

Abstract

Understanding how has evolved into a professional pathogen is helpful in studying its pathogenesis and for designing vaccines. We investigated how the evolutionary adaptation of mc51 to an important clinical stressor HO allows bacteria to undergo coordinated genetic mutations, resulting in increased pathogenicity. Whole-genome sequencing identified a mutation site in the gene, which caused increased expression of . Using a Wayne dormancy model, mc51 showed a growth advantage over its parental strain mc155 in recovering from dormancy under anaerobic conditions. Meanwhile, the high level of KatG in mc51 was accompanied by a low level of ATP, which meant that mc51 is at a low respiratory level. Additionally, the redox-related protein Rv1996 showed different phenotypes in different specific redox states in mc155 and mc51, BCG, and mc7000. In conclusion, our study shows that the same gene presents different phenotypes under different physiological conditions. This may partly explain why and have similar virulence factors and signaling transduction systems such as two-component systems and sigma factors, but due to the different redox states in the corresponding bacteria, is a nonpathogen, while is a pathogen. As mc51 overcomes its shortcomings of rapid removal, it can potentially be developed as a vaccine vector.

摘要

了解[具体细菌名称]如何演变成一种专业病原体,有助于研究其发病机制并设计疫苗。我们研究了[细菌名称]mc51对重要临床应激源HO的进化适应性如何使细菌发生协调的基因突变,从而导致致病性增加。全基因组测序确定了[基因名称]基因中的一个突变位点,该位点导致[相关蛋白名称]的表达增加。使用韦恩休眠模型,mc51在厌氧条件下从休眠中恢复时,显示出比其亲本菌株mc155具有生长优势。同时,mc51中高水平的KatG伴随着低水平的ATP,这意味着mc51处于低呼吸水平。此外,氧化还原相关蛋白Rv1996在mc155和mc51、卡介苗(BCG)以及mc7000的不同特定氧化还原状态下表现出不同的表型。总之,我们的研究表明,同一基因在不同生理条件下呈现不同表型。这可能部分解释了为什么[相关细菌名称1]和[相关细菌名称2]具有相似的毒力因子和信号转导系统,如双组分系统和西格玛因子,但由于相应细菌中的氧化还原状态不同,[相关细菌名称1]是非病原体,而[相关细菌名称2]是病原体。由于mc51克服了其快速清除的缺点,它有可能被开发为一种疫苗载体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验