Wang Jujie, Xu Wenjie, Dong Jian, Zhang Yue
School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044 China.
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044 China.
Stoch Environ Res Risk Assess. 2022;36(10):3417-3437. doi: 10.1007/s00477-022-02202-5. Epub 2022 Mar 26.
Effective prediction of air pollution concentrations is of great importance to both the physical and mental health of citizens and urban pollution control. As one of the main components of air pollutants, accurate prediction of PM can provide a reference for air pollution control and pollution warning. This study proposes an air pollutant prediction and early warning framework, which innovatively combines feature extraction techniques, feature selection methods and intelligent optimization algorithms. First, the PM sequence is decomposed into several subsequences using the complete ensemble empirical mode decomposition with adaptive noise, and then the new components of the subsequences with different complexity are reconstructed using fuzzy entropy. Then, the Max-Relevance and Min-Redundancy method is used to select the influencing factors of the different reconstructed components. Then, a two-stage deep learning hybrid framework is constructed to model the prediction and nonlinear integration of the reconstructed components using a long short-term memory artificial neural network optimized by the gray wolf optimization algorithm. Finally, based on the proposed hybrid prediction framework, effective prediction and early warning of air pollutants are achieved. In an empirical study in three cities in China, the prediction accuracy, warning accuracy and prediction stability of the proposed hybrid framework outperformed the other comparative models. The analysis results indicate that the developed hybrid framework can be used as an effective tool for air pollutant prediction and early warning.
准确预测空气污染浓度对市民的身心健康以及城市污染控制都至关重要。作为空气污染物的主要成分之一,对细颗粒物(PM)的准确预测可为空气污染控制和污染预警提供参考。本研究提出了一种空气污染物预测与预警框架,创新性地将特征提取技术、特征选择方法和智能优化算法相结合。首先,利用具有自适应噪声的完备总体经验模态分解将PM序列分解为若干子序列,然后使用模糊熵对不同复杂度子序列的新分量进行重构。接着,采用最大相关最小冗余方法选择不同重构分量的影响因素。然后,构建一个两阶段深度学习混合框架,使用灰狼优化算法优化的长短期记忆人工神经网络对重构分量进行预测建模和非线性整合。最后,基于所提出的混合预测框架,实现了对空气污染物的有效预测和预警。在中国三个城市的实证研究中,所提出的混合框架的预测精度、预警精度和预测稳定性均优于其他对比模型。分析结果表明,所开发的混合框架可作为空气污染物预测和预警的有效工具。