Roldán Diego M, Carrizo Daniel, Sánchez-García Laura, Menes Rodolfo Javier
Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
Laboratorio de Microbiología, Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
Front Microbiol. 2022 Mar 17;13:822552. doi: 10.3389/fmicb.2022.822552. eCollection 2022.
Global warming has a strong impact on polar regions. Particularly, the Antarctic Peninsula and nearby islands have experienced a marked warming trend in the past 50 years. Therefore, higher methane (CH) emissions from this area could be expected in the future. Since mitigation of these emissions can be carried out by microbial oxidation, understanding this biological process is crucial since to our knowledge, no related studies have been performed in this area before. In this work, the aerobic CH oxidation potential of five freshwater lake sediments of Fildes Peninsula (King George Island, South Shetland Islands) was determined with values from 0.07 to 10 μmol CH gdw day and revealed up to 100-fold increase in temperature gradients (5, 10, 15, and 20°C). The structure and diversity of the bacterial community in the sediments were analyzed by next-generation sequencing (Illumina MiSeq) of 16S rRNA and genes. A total of 4,836 ASVs were identified being , , , and the most abundant phyla. The analysis of the gene identified 200 ASVs of methanotrophs, being Clade 2 (Type I, family ) the main responsible of the aerobic CH oxidation. Moreover, both approaches revealed the presence of methanotrophs of the classes (families and ), (family ), (family ), and the candidate phylum of anaerobic methanotrophs . In addition, bacterial phospholipid fatty acids (PLFA) biomarkers were studied as a proxy for aerobic methane-oxidizing bacteria and confirmed these results. Methanotrophic bacterial diversity was significantly correlated with pH. In conclusion, our findings suggest that aerobic methanotrophs could mitigate CH emissions in a future scenario with higher temperatures in this climate-sensitive area. This study provides new insights into the diversity of methanotrophs, as well as the influence of temperature on the CH oxidation potential in sediments of freshwater lakes in polar regions of the southern hemisphere.
全球变暖对极地地区有强烈影响。特别是,南极半岛及附近岛屿在过去50年经历了显著的变暖趋势。因此,预计该地区未来会有更高的甲烷(CH)排放。由于这些排放的减排可通过微生物氧化来实现,了解这一生物过程至关重要,因为据我们所知,此前该领域尚未开展相关研究。在这项工作中,测定了菲尔德斯半岛(南设得兰群岛乔治王岛)五个淡水湖沉积物的好氧CH氧化潜力,其值为0.07至10 μmol CH gdw天,并揭示了在温度梯度为5、10、15和20°C时,氧化潜力增加了100倍。通过对16S rRNA和基因进行二代测序(Illumina MiSeq)分析了沉积物中细菌群落的结构和多样性。共鉴定出4836个扩增子序列变体(ASV),其中、、和是最丰富的门。对基因的分析鉴定出200个甲烷营养菌的ASV,其中Clade 2(I型,科)是好氧CH氧化的主要负责者。此外,两种方法都揭示了、(科和科)、(科)、(科)类别的甲烷营养菌以及厌氧甲烷营养菌候选门的存在。此外,还研究了细菌磷脂脂肪酸(PLFA)生物标志物作为好氧甲烷氧化细菌的替代指标,并证实了这些结果。甲烷营养细菌的多样性与pH显著相关。总之,我们的研究结果表明,在这个对气候敏感的地区,未来温度升高的情况下,好氧甲烷营养菌可以减少CH排放。这项研究为甲烷营养菌的多样性以及温度对南半球极地地区淡水湖沉积物中CH氧化潜力的影响提供了新的见解。