Suppr超能文献

利用卷积神经网络在透射电子显微镜图像中识别细菌耐药细胞。

Identification of Bacterial Drug-Resistant Cells by the Convolutional Neural Network in Transmission Electron Microscope Images.

作者信息

Hayashi-Nishino Mitsuko, Aoki Kota, Kishimoto Akihiro, Takeuchi Yuna, Fukushima Aiko, Uchida Kazushi, Echigo Tomio, Yagi Yasushi, Hirose Mika, Iwasaki Kenji, Shin'ya Eitaro, Washio Takashi, Furusawa Chikara, Nishino Kunihiko

机构信息

SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan.

Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.

出版信息

Front Microbiol. 2022 Mar 15;13:839718. doi: 10.3389/fmicb.2022.839718. eCollection 2022.

Abstract

The emergence of bacteria that are resistant to antibiotics is common in areas where antibiotics are used widely. The current standard procedure for detecting bacterial drug resistance is based on bacterial growth under antibiotic treatments. Here we describe the morphological changes in enoxacin-resistant cells and the computational method used to identify these resistant cells in transmission electron microscopy (TEM) images without using antibiotics. Our approach was to create patches from TEM images of enoxacin-sensitive and enoxacin-resistant . strains, use a convolutional neural network for patch classification, and identify the strains on the basis of the classification results. The proposed method was highly accurate in classifying cells, achieving an accuracy rate of 0.94. Using a gradient-weighted class activation mapping to visualize the region of interest, enoxacin-resistant and enoxacin-sensitive cells were characterized by comparing differences in the envelope. Moreover, Pearson's correlation coefficients suggested that four genes, including , the gene encoding the major outer membrane lipoprotein, were strongly associated with the image features of enoxacin-resistant cells.

摘要

在抗生素广泛使用的地区,对抗生素产生耐药性的细菌的出现很常见。目前检测细菌耐药性的标准程序是基于抗生素治疗下的细菌生长情况。在此,我们描述了耐依诺沙星细胞的形态变化以及用于在不使用抗生素的情况下在透射电子显微镜(TEM)图像中识别这些耐药细胞的计算方法。我们的方法是从耐依诺沙星和对依诺沙星敏感的菌株的TEM图像中创建图像块,使用卷积神经网络进行图像块分类,并根据分类结果识别菌株。所提出的方法在细胞分类方面具有很高的准确性,准确率达到0.94。使用梯度加权类激活映射来可视化感兴趣区域,通过比较包膜差异来表征耐依诺沙星和对依诺沙星敏感的细胞。此外,皮尔逊相关系数表明,包括编码主要外膜脂蛋白的基因在内的四个基因与耐依诺沙星细胞的图像特征密切相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2d/8965347/e4df82bc087b/fmicb-13-839718-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验