Suppr超能文献

肾脏中的缺氧诱导因子与氧生物学。

Hypoxia-Inducible Factor and Oxygen Biology in the Kidney.

机构信息

Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

出版信息

Kidney360. 2020 Jul 22;1(9):1021-1031. doi: 10.34067/KID.0001302020. eCollection 2020 Sep 24.

Abstract

Kidney tissue hypoxia is detected in various kidney diseases and is considered to play an important role in the pathophysiology of both AKI and CKD. Because of the characteristic vascular architecture and high energy demand to drive tubular solute transport, the renal medulla is especially prone to hypoxia. Injured kidneys often present capillary rarefaction, inflammation, and fibrosis, which contribute to sustained kidney hypoxia, forming a vicious cycle promoting progressive CKD. Hypoxia-inducible factor (HIF), a transcription factor responsible for cellular adaptation to hypoxia, is generally considered to protect against AKI. On the contrary, consequences of sustained HIF activation in CKD may be either protective, neutral, or detrimental. The kidney outcomes seem to be affected by various factors, such as cell types in which HIF is activated/inhibited, disease models, balance between two HIF isoforms, and time and methods of intervention. This suggests multifaceted functions of HIF and highlights the importance of understanding its role within each specific context. Prolyl-hydroxylase domain (PHD) inhibitors, which act as HIF stabilizers, have been developed to treat anemia of CKD. Although many preclinical studies demonstrated renoprotective effects of PHD inhibitors in CKD models, there may be some situations in which they lead to deleterious effects. Further studies are needed to identify patients who would gain additional benefits from PHD inhibitors and those who may need to avoid them.

摘要

肾脏组织缺氧在各种肾脏疾病中均有检测到,并被认为在急性肾损伤和慢性肾脏病的病理生理学中发挥重要作用。由于其特有的血管结构和驱动管状溶质转运所需的高能量需求,肾脏髓质尤其容易发生缺氧。受损的肾脏通常会出现毛细血管稀疏、炎症和纤维化,这导致持续的肾脏缺氧,形成一个促进慢性肾脏病进展的恶性循环。缺氧诱导因子(HIF)是一种负责细胞对缺氧适应的转录因子,通常被认为可以预防急性肾损伤。相反,慢性肾脏病中持续的 HIF 激活的后果可能具有保护作用、中性作用或有害作用。肾脏结局似乎受到多种因素的影响,例如 HIF 被激活/抑制的细胞类型、疾病模型、两种 HIF 同工型之间的平衡以及干预的时间和方法。这表明 HIF 具有多方面的功能,并强调了在每个特定背景下理解其作用的重要性。脯氨酰羟化酶结构域(PHD)抑制剂作为 HIF 稳定剂被开发用于治疗慢性肾脏病贫血。尽管许多临床前研究表明 PHD 抑制剂在慢性肾脏病模型中具有肾脏保护作用,但在某些情况下,它们可能会产生有害影响。需要进一步的研究来确定哪些患者可以从 PHD 抑制剂中获得额外的益处,以及哪些患者可能需要避免使用。

相似文献

1
Hypoxia-Inducible Factor and Oxygen Biology in the Kidney.肾脏中的缺氧诱导因子与氧生物学。
Kidney360. 2020 Jul 22;1(9):1021-1031. doi: 10.34067/KID.0001302020. eCollection 2020 Sep 24.
8
A mechanistic link between renal ischemia and fibrosis.肾脏缺血与纤维化之间的机制联系。
Med Mol Morphol. 2017 Mar;50(1):1-8. doi: 10.1007/s00795-016-0146-3. Epub 2016 Jul 20.

引用本文的文献

2
Assembly and disassembly of stress granules in kidney diseases.肾脏疾病中应激颗粒的组装与解聚
iScience. 2025 May 24;28(6):112578. doi: 10.1016/j.isci.2025.112578. eCollection 2025 Jun 20.
4
Crosstalk between glomeruli and tubules.肾小球与肾小管之间的相互作用。
Nat Rev Nephrol. 2025 Mar;21(3):189-199. doi: 10.1038/s41581-024-00907-0. Epub 2024 Dec 6.
6
Risk factors for rapid kidney function decline in diabetes patients.糖尿病患者肾功能快速下降的风险因素。
Ren Fail. 2024 Dec;46(2):2398188. doi: 10.1080/0886022X.2024.2398188. Epub 2024 Sep 11.

本文引用的文献

5
The noblesse of kidney physiology.肾脏生理学的高贵之处。
Kidney Int. 2019 Dec;96(6):1250-1253. doi: 10.1016/j.kint.2019.10.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验