College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.
Department of Computer Science, College of Engineering and Technology, Dambi Dollo University, Dambi Dollo, Oromia Region, Ethiopia.
Comput Intell Neurosci. 2022 Mar 24;2022:9985933. doi: 10.1155/2022/9985933. eCollection 2022.
With the rapid development of mobile medical care, medical institutions also have the hidden danger of privacy leakage while sharing personal medical data. Based on the k-anonymity and l-diversity supervised models, it is proposed to use the classified personalized entropy l-diversity privacy protection model to protect user privacy in a fine-grained manner. By distinguishing solid and weak sensitive attribute values, the constraints on sensitive attributes are improved, and the sensitive information is reduced for the leakage probability of vital information to achieve the safety of medical data sharing. This research offers a customized information entropy l-diversity model and performs experiments to tackle the issues that the information entropy l-diversity model does not discriminate between strong and weak sensitive features. Data analysis and experimental results show that this method can minimize execution time while improving data accuracy and service quality, which is more effective than existing solutions. The limits of solid and weak on sensitive qualities are enhanced, sensitive data are reduced, and the chance of crucial data leakage is lowered, all of which contribute to the security of healthcare data exchange. This research offers a customized information entropy l-diversity model and performs experiments to tackle the issues that the information entropy l-diversity model does not discriminate between strong and weak sensitive features. The scope of this research is that this paper enhances data accuracy while minimizing the algorithm's execution time.
随着移动医疗的快速发展,医疗机构在共享个人医疗数据的同时也存在隐私泄露的隐患。针对这一问题,本文提出了一种基于 k-匿名和 l-多样性监督模型的分类个性化熵 l-多样性隐私保护模型,对用户隐私进行细粒度的保护。通过区分实值和弱敏感属性值,改进敏感属性的约束,减少敏感信息的泄露概率,从而实现医疗数据共享的安全性。本文研究了一种定制的信息熵 l-多样性模型,并进行了实验,以解决信息熵 l-多样性模型不能区分强敏感特征和弱敏感特征的问题。数据分析和实验结果表明,该方法在提高数据准确性和服务质量的同时,能够最小化执行时间,比现有解决方案更有效。通过增强敏感属性的实值和弱值的限制,减少敏感数据,降低关键数据泄露的可能性,从而提高医疗数据交换的安全性。本研究提出了一种定制的信息熵 l-多样性模型,并进行了实验,以解决信息熵 l-多样性模型不能区分强敏感特征和弱敏感特征的问题。本文的研究范围是在最小化算法执行时间的同时提高数据准确性。
Comput Intell Neurosci. 2022
Interact J Med Res. 2012-11-13
BMC Med Inform Decis Mak. 2021-10-18
IEEE J Biomed Health Inform. 2024-6
Comput Intell Neurosci. 2022
Comput Intell Neurosci. 2022
Sensors (Basel). 2021-6-9
J Med Internet Res. 2024-3-8
Diagnostics (Basel). 2023-8-7
Comput Intell Neurosci. 2023-8-2
Behav Neurol. 2021
Comput Methods Programs Biomed. 2021-11