文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用机器学习算法保护社交网络中的医疗保健数据隐私。

Privacy Protection of Healthcare Data over Social Networks Using Machine Learning Algorithms.

机构信息

College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.

Department of Computer Science, College of Engineering and Technology, Dambi Dollo University, Dambi Dollo, Oromia Region, Ethiopia.

出版信息

Comput Intell Neurosci. 2022 Mar 24;2022:9985933. doi: 10.1155/2022/9985933. eCollection 2022.


DOI:10.1155/2022/9985933
PMID:35371203
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8970892/
Abstract

With the rapid development of mobile medical care, medical institutions also have the hidden danger of privacy leakage while sharing personal medical data. Based on the k-anonymity and l-diversity supervised models, it is proposed to use the classified personalized entropy l-diversity privacy protection model to protect user privacy in a fine-grained manner. By distinguishing solid and weak sensitive attribute values, the constraints on sensitive attributes are improved, and the sensitive information is reduced for the leakage probability of vital information to achieve the safety of medical data sharing. This research offers a customized information entropy l-diversity model and performs experiments to tackle the issues that the information entropy l-diversity model does not discriminate between strong and weak sensitive features. Data analysis and experimental results show that this method can minimize execution time while improving data accuracy and service quality, which is more effective than existing solutions. The limits of solid and weak on sensitive qualities are enhanced, sensitive data are reduced, and the chance of crucial data leakage is lowered, all of which contribute to the security of healthcare data exchange. This research offers a customized information entropy l-diversity model and performs experiments to tackle the issues that the information entropy l-diversity model does not discriminate between strong and weak sensitive features. The scope of this research is that this paper enhances data accuracy while minimizing the algorithm's execution time.

摘要

随着移动医疗的快速发展,医疗机构在共享个人医疗数据的同时也存在隐私泄露的隐患。针对这一问题,本文提出了一种基于 k-匿名和 l-多样性监督模型的分类个性化熵 l-多样性隐私保护模型,对用户隐私进行细粒度的保护。通过区分实值和弱敏感属性值,改进敏感属性的约束,减少敏感信息的泄露概率,从而实现医疗数据共享的安全性。本文研究了一种定制的信息熵 l-多样性模型,并进行了实验,以解决信息熵 l-多样性模型不能区分强敏感特征和弱敏感特征的问题。数据分析和实验结果表明,该方法在提高数据准确性和服务质量的同时,能够最小化执行时间,比现有解决方案更有效。通过增强敏感属性的实值和弱值的限制,减少敏感数据,降低关键数据泄露的可能性,从而提高医疗数据交换的安全性。本研究提出了一种定制的信息熵 l-多样性模型,并进行了实验,以解决信息熵 l-多样性模型不能区分强敏感特征和弱敏感特征的问题。本文的研究范围是在最小化算法执行时间的同时提高数据准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f5/8970892/663362a44b4a/CIN2022-9985933.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f5/8970892/242c1ff51878/CIN2022-9985933.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f5/8970892/c295122009fd/CIN2022-9985933.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f5/8970892/444f09801738/CIN2022-9985933.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f5/8970892/663362a44b4a/CIN2022-9985933.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f5/8970892/242c1ff51878/CIN2022-9985933.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f5/8970892/c295122009fd/CIN2022-9985933.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f5/8970892/444f09801738/CIN2022-9985933.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f5/8970892/663362a44b4a/CIN2022-9985933.004.jpg

相似文献

[1]
Privacy Protection of Healthcare Data over Social Networks Using Machine Learning Algorithms.

Comput Intell Neurosci. 2022

[2]
An Approach to Reducing Information Loss and Achieving Diversity of Sensitive Attributes in k-anonymity Methods.

Interact J Med Res. 2012-11-13

[3]
Privacy protection of medical data in social network.

BMC Med Inform Decis Mak. 2021-10-18

[4]
EPPS: Efficient and Privacy-Preserving Personal Health Information Sharing in Mobile Healthcare Social Networks.

Sensors (Basel). 2015-9-3

[5]
Channel Adaptive and Sparsity Personalized Federated Learning for Privacy Protection in Smart Healthcare Systems.

IEEE J Biomed Health Inform. 2024-6

[6]
Application of Personal Information Privacy Protection Based on Machine Learning Algorithm.

Comput Intell Neurosci. 2022

[7]
Research on Information Leakage Tracking Algorithms in Online Social Networks.

Comput Intell Neurosci. 2022

[8]
Designing a Novel Approach Using a Greedy and Information-Theoretic Clustering-Based Algorithm for Anonymizing Microdata Sets.

Entropy (Basel). 2023-12-1

[9]
Ambiguity in Social Network Data for Presence, Sensitive-Attribute, Degree and Relationship Privacy Protection.

PLoS One. 2015-6-25

[10]
Privacy-Enhancing -Nearest Neighbors Search over Mobile Social Networks.

Sensors (Basel). 2021-6-9

引用本文的文献

[1]
Application of machine learning in the management of lymphoma: Current practice and future prospects.

Digit Health. 2024-4-16

[2]
Generative AI in Medical Practice: In-Depth Exploration of Privacy and Security Challenges.

J Med Internet Res. 2024-3-8

[3]
Hybrid Majority Voting: Prediction and Classification Model for Obesity.

Diagnostics (Basel). 2023-8-7

[4]
Retracted: Privacy Protection of Healthcare Data over Social Networks Using Machine Learning Algorithms.

Comput Intell Neurosci. 2023-8-2

本文引用的文献

[1]
Patient Behavioral Analysis with Smart Healthcare and IoT.

Behav Neurol. 2021

[2]
Asthma self-management app for Indonesian asthmatics: A patient-centered design.

Comput Methods Programs Biomed. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索