Ngantcha Patricia, Amith Muhammad Tuan, Roberts Kirk, Valenza John A, Walji Muhammad, Tao Cui
Texas Southern University, Houston, TX, USA.
School of Biomedical Informatics, University of Texas Health, Science Center at Houston, Houston, TX, USA.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2021 Dec;2021:1818-1825. doi: 10.1109/bibm52615.2021.9669748.
The quality of patient-provider communication can predict the healthcare outcomes in patients, and therefore, training dental providers to handle the communication effort with patients is crucial. In our previous work, we developed an ontology model that can standardize and represent patient-provider communication, which can later be integrated in conversational agents as tools for dental communication training. In this study, we embark on enriching our previous model with an ontology of patient personas to portray and express types of dental patient archetypes. The Ontology of Patient Personas that we developed was rooted in terminologies from an OBO Foundry ontology and dental electronic health record data elements. We discuss how this ontology aims to enhance the aforementioned dialogue ontology and future direction in executing our model in software agents to train dental students.
医患沟通的质量能够预测患者的医疗保健结果,因此,培训牙科医疗服务提供者以处理与患者的沟通工作至关重要。在我们之前的工作中,我们开发了一个本体模型,该模型可以对医患沟通进行标准化和表示,随后可集成到对话代理中作为牙科沟通培训工具。在本研究中,我们着手通过患者角色本体来丰富我们之前的模型,以描绘和表达牙科患者原型的类型。我们开发的患者角色本体基于OBO铸造厂本体的术语和牙科电子健康记录数据元素。我们讨论了这个本体如何旨在增强上述对话本体,以及在软件代理中执行我们的模型以培训牙科学生的未来方向。