Suppr超能文献

计算机断层扫描特征在无可见脂肪的嫌色性肾细胞癌与嗜酸细胞瘤及血管平滑肌脂肪瘤鉴别诊断中的作用

Role of computed tomography features in the differential diagnosis of chromophobe renal cell carcinoma from oncocytoma and angiomyolipoma without visible fat.

作者信息

Zhou Cuiping, Ban Xiaohua, Lv Jianxun, Cheng Lin, Xu Jianmin, Shen Xinping

机构信息

Department of Radiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.

Department of Medical Imaging Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.

出版信息

Quant Imaging Med Surg. 2022 Apr;12(4):2332-2343. doi: 10.21037/qims-21-734.

Abstract

BACKGROUND

Chromophobe renal cell carcinoma (chRCC) is often confused with oncocytoma and angiomyolipoma without visible fat (AML.wovf). The aim of this study was to determine computed tomography (CT) features predictive of chRCC to distinguish it from oncocytoma and AML.wovf.

METHODS

This multicenter study enrolled 38 patients with chRCC, 32 with oncocytoma, and 43 with AML.wovf of the kidney. The clinical and imaging features of all cases were reviewed retrospectively, and associations between the features and histopathology were analyzed using univariate analysis, followed by multinomial logistic regression analysis. Receiver operating characteristic (ROC) curve analysis was used to evaluate logistic regression models and determine optimal cut-off values for numeric data.

RESULTS

Univariate analysis revealed significant differences between chRCC and oncocytoma in tumor ratios of lesion to renal cortex net enhancement (RLRCNE) on both corticomedullary and nephrographic phase images (P<0.001 for both) and calcification (P=0.035). On multinomial logistic regression analysis, only corticomedullary RLRCNE remained an independent predictor for the differential diagnosis of chRCC from oncocytoma (P<0.001), with an optimal cut-off value of 0.53. Comparing chRCC and AML.wovf, univariate analysis revealed significant differences in age (P=0.003), segmental enhancement inversion (SEI) (P=0.006), corticomedullary RLRCNE (P<0.001), unenhanced ratio of lesion to renal cortex attenuation (RLRCA; P<0.001), size (P<0.001), enhancement pattern over time (P=0.017), angle (P=0.014), and central scar (P<0.001). Only unenhanced RLRCA (P<0.001), size (P=0.003), and enhancement pattern over time (P=0.002) remained as independent predictors on multinomial logistic regression analysis, with optimal cut-off values of 1.13 and 30.9 mm for RLRCA and size, respectively. On ROC curve analysis of the logistic regression models, the areas under curve (AUC) were 0.888 and 0.963 for chRCC versus oncocytoma and AML.wovf, respectively.

CONCLUSIONS

Corticomedullary RLRCNE on CT images was an independent predictor for the differential diagnosis of chRCC from oncocytoma. Unenhanced RLRCA, size, and enhancement pattern over time on CT had predictive value for discriminating chRCC from AML.wovf.

摘要

背景

嫌色性肾细胞癌(chRCC)常与肾嗜酸细胞瘤及无可见脂肪的血管平滑肌脂肪瘤(AML.wovf)相混淆。本研究旨在确定可预测chRCC并将其与肾嗜酸细胞瘤和AML.wovf相鉴别的计算机断层扫描(CT)特征。

方法

这项多中心研究纳入了38例chRCC患者、32例肾嗜酸细胞瘤患者和43例肾AML.wovf患者。回顾性分析了所有病例的临床和影像特征,并采用单因素分析分析这些特征与组织病理学之间的关联,随后进行多项逻辑回归分析。采用受试者操作特征(ROC)曲线分析来评估逻辑回归模型并确定数值数据的最佳截断值。

结果

单因素分析显示,在皮质髓质期和肾实质期图像上,chRCC与肾嗜酸细胞瘤在病灶与肾皮质净强化的肿瘤比值(RLRCNE)方面存在显著差异(两者均P<0.001)以及钙化方面(P=0.035)。在多项逻辑回归分析中,只有皮质髓质期RLRCNE仍然是chRCC与肾嗜酸细胞瘤鉴别诊断的独立预测因素(P<0.001),最佳截断值为0.53。比较chRCC和AML.wovf,单因素分析显示在年龄(P=0.003)、节段性强化反转(SEI)(P=0.006)、皮质髓质期RLRCNE(P<0.001)、病灶与肾皮质衰减的平扫比值(RLRCA;P<0.001)、大小(P<0.001)、强化随时间的模式(P=0.017)、角度(P=0.014)和中央瘢痕(P<0.001)方面存在显著差异。在多项逻辑回归分析中,只有平扫RLRCA(P<0.001)、大小(P=0.003)和强化随时间的模式(P=0.002)仍然是独立预测因素,RLRCA和大小的最佳截断值分别为1.13和30.9 mm。在逻辑回归模型的ROC曲线分析中,chRCC与肾嗜酸细胞瘤及AML.wovf比较的曲线下面积(AUC)分别为0.888和0.963。

结论

CT图像上的皮质髓质期RLRCNE是chRCC与肾嗜酸细胞瘤鉴别诊断的独立预测因素。CT上的平扫RLRCA、大小和强化随时间的模式对chRCC与AML.wovf的鉴别具有预测价值。

相似文献

7
Renal angiomyolipoma without visible fat: Can we make the diagnosis using CT and MRI?
Eur Radiol. 2018 Feb;28(2):542-553. doi: 10.1007/s00330-017-4988-4. Epub 2017 Aug 4.
8
Comparative study of CT appearances in renal oncocytoma and chromophobe renal cell carcinoma.
Acta Radiol. 2016 Apr;57(4):500-6. doi: 10.1177/0284185115585035. Epub 2015 May 13.
10
Comparison of computed tomography findings between renal oncocytomas and chromophobe renal cell carcinomas.
Korean J Urol. 2015 Oct;56(10):695-702. doi: 10.4111/kju.2015.56.10.695. Epub 2015 Oct 6.

本文引用的文献

2
The "central stellate scar" sign in renal oncocytoma.
Abdom Radiol (NY). 2019 May;44(5):1942-1943. doi: 10.1007/s00261-019-01899-3.
3
Discrimination of oncocytoma and chromophobe renal cell carcinoma using MRI.
Diagn Interv Radiol. 2019 Jan;25(1):5-13. doi: 10.5152/dir.2018.18013.
4
Renal Angiomyolipoma Based on New Classification: How to Differentiate It From Renal Cell Carcinoma.
AJR Am J Roentgenol. 2019 Mar;212(3):582-588. doi: 10.2214/AJR.18.20408. Epub 2019 Jan 8.
5
WHO/ISUP classification, grading and pathological staging of renal cell carcinoma: standards and controversies.
World J Urol. 2018 Dec;36(12):1913-1926. doi: 10.1007/s00345-018-2447-8. Epub 2018 Aug 19.
6
Characterization of small (<4cm) solid renal masses by computed tomography and magnetic resonance imaging: Current evidence and further development.
Diagn Interv Imaging. 2018 Jul-Aug;99(7-8):443-455. doi: 10.1016/j.diii.2018.03.004. Epub 2018 Mar 30.
7
Renal angiomyolipoma without visible fat: Can we make the diagnosis using CT and MRI?
Eur Radiol. 2018 Feb;28(2):542-553. doi: 10.1007/s00330-017-4988-4. Epub 2017 Aug 4.
9
Computed Tomography and Magnetic Resonance Findings of Fat-Poor Angiomyolipomas.
J Endourol. 2017 Feb;31(2):119-128. doi: 10.1089/end.2016.0219. Epub 2017 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验