文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 CT 的影像组学列线图,用于区分无可见脂肪的肾血管平滑肌脂肪瘤与均质透明细胞肾细胞癌。

A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma.

机构信息

Radiology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.

PET-CT Center, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266061, Shandong, China.

出版信息

Eur Radiol. 2020 Feb;30(2):1274-1284. doi: 10.1007/s00330-019-06427-x. Epub 2019 Sep 10.


DOI:10.1007/s00330-019-06427-x
PMID:31506816
Abstract

OBJECTIVES: To develop and validate a radiomics nomogram for preoperative differentiating renal angiomyolipoma without visible fat (AML.wovf) from homogeneous clear cell renal cell carcinoma (hm-ccRCC). METHODS: Ninety-nine patients with AML.wovf (n = 36) and hm-ccRCC (n = 63) were divided into a training set (n = 80) and a validation set (n = 19). Radiomics features were extracted from corticomedullary phase and nephrographic phase CT images. A radiomics signature was constructed and a radiomics score (Rad-score) was calculated. Demographics and CT findings were assessed to build a clinical factors model. Combined with the Rad-score and independent clinical factors, a radiomics nomogram was constructed. Nomogram performance was assessed with respect to calibration, discrimination, and clinical usefulness. RESULTS: Fourteen features were used to build the radiomics signature. The radiomics signature showed good discrimination in the training set (AUC [area under the curve], 0.879; 95%; confidence interval [CI], 0.793-0.966) and the validation set (AUC, 0.846; 95% CI, 0.643-1.000). The radiomics nomogram showed good calibration and discrimination in the training set (AUC, 0.896; 95% CI, 0.810-0.983) and the validation set (AUC, 0.949; 95% CI, 0.856-1.000) and showed better discrimination capability (p < 0.05) compared with the clinical factor model (AUC, 0.788; 95% CI, 0.683-0.893) in the training set. Decision curve analysis demonstrated the nomogram outperformed the clinical factors model and radiomics signature in terms of clinical usefulness. CONCLUSIONS: The CT-based radiomics nomogram, a noninvasive preoperative prediction tool that incorporates the Rad-score and clinical factors, shows favorable predictive efficacy for differentiating AML.wovf from hm-ccRCC, which might assist clinicians in tailoring precise therapy. KEY POINTS: • Differential diagnosis between AML.wovf and hm-ccRCC is rather difficult by conventional imaging modalities. • A radiomics nomogram integrated with the radiomics signature, demographics, and CT findings facilitates differentiation of AML.wovf from hm-ccRCC with improved diagnostic efficacy. • The CT-based radiomics nomogram might spare unnecessary surgery for AML.wovf.

摘要

目的:建立并验证一种用于术前鉴别无脂肪肾血管平滑肌脂肪瘤(AML.wovf)与均质透明细胞肾细胞癌(hm-ccRCC)的影像组学列线图。

方法:将 99 例 AML.wovf(n=36)和 hm-ccRCC(n=63)患者分为训练集(n=80)和验证集(n=19)。从皮质期和肾实质期 CT 图像中提取影像组学特征。构建影像组学特征并计算影像组学评分(Rad-score)。评估患者的临床资料和 CT 表现,以构建临床因素模型。将 Rad-score 与独立的临床因素相结合,构建影像组学列线图。通过校准、判别和临床实用性来评估列线图的性能。

结果:采用 14 个特征构建影像组学特征。在训练集(AUC[曲线下面积],0.879;95%置信区间[CI],0.793-0.966)和验证集(AUC,0.846;95%CI,0.643-1.000)中,该影像组学特征显示出良好的鉴别能力。影像组学列线图在训练集(AUC,0.896;95%CI,0.810-0.983)和验证集(AUC,0.949;95%CI,0.856-1.000)中具有良好的校准和判别能力,且在训练集的判别能力优于临床因素模型(AUC,0.788;95%CI,0.683-0.893)(p<0.05)。决策曲线分析表明,该列线图在临床实用性方面优于临床因素模型和影像组学特征。

结论:基于 CT 的影像组学列线图是一种非侵入性的术前预测工具,整合了 Rad-score 和临床因素,对鉴别 AML.wovf 和 hm-ccRCC 具有良好的预测效果,有助于临床医生制定精确的治疗方案。

关键点:

  • 传统影像学方法鉴别 AML.wovf 和 hm-ccRCC 较为困难。
  • 一种整合了影像组学特征、临床资料和 CT 表现的影像组学列线图,有助于提高 AML.wovf 和 hm-ccRCC 的鉴别诊断效能。
  • 基于 CT 的影像组学列线图可以避免对 AML.wovf 的不必要手术。

相似文献

[1]
A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma.

Eur Radiol. 2019-9-10

[2]
Development and validation of a CT-based nomogram for preoperative prediction of clear cell renal cell carcinoma grades.

Eur Radiol. 2021-8

[3]
A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver.

Cancer Imaging. 2020-2-24

[4]
Differentiation of renal angiomyolipoma without visible fat from small clear cell renal cell carcinoma by using specific region of interest on contrast-enhanced CT: a new combination of quantitative tools.

Cancer Imaging. 2021-7-5

[5]
A CT-based radiomics nomogram for differentiation of renal oncocytoma and chromophobe renal cell carcinoma with a central scar-matched study.

Br J Radiol. 2022-1-1

[6]
Differentiation of Clear Cell and Non-clear-cell Renal Cell Carcinoma through CT-based Radiomics Models and Nomogram.

Curr Med Imaging. 2023

[7]
Can whole-tumor radiomics-based CT analysis better differentiate fat-poor angiomyolipoma from clear cell renal cell caricinoma: compared with conventional CT analysis?

Abdom Radiol (NY). 2020-8

[8]
A convention-radiomics CT nomogram for differentiating fat-poor angiomyolipoma from clear cell renal cell carcinoma.

Sci Rep. 2021-2-25

[9]
[Predicting postoperative recurrence of stage Ⅰ-Ⅲ renal clear cell carcinoma based on preoperative CT radiomics feature nomogram].

Nan Fang Yi Ke Da Xue Xue Bao. 2021-8-31

[10]
A CT-based radiomics nomogram for differentiation of lympho-associated benign and malignant lesions of the parotid gland.

Eur Radiol. 2021-5

引用本文的文献

[1]
Usefulness of the internal-to-external circle area ratio in contrast-enhanced CT to differentiate small (< 3 cm) fat-poor angiomyolipoma from renal cell carcinoma.

BMC Med Imaging. 2025-7-1

[2]
An interpretable radiomics-based machine learning model for predicting reverse left ventricular remodeling in STEMI patients using late gadolinium enhancement of myocardial scar.

Eur Radiol. 2025-4-3

[3]
Radiomics based on preoperative magnetic resonance imaging predict the cell lineages of nonfunctioning pituitary neuroendocrine tumors.

Neuroradiology. 2025-3-21

[4]
Predicting major adverse cardiovascular events in angina patients using radiomic features of pericoronary adipose tissue based on CCTA.

Front Cardiovasc Med. 2024-10-31

[5]
A CT-based radiomics nomogram for predicting histologic grade and outcome in chondrosarcoma.

Cancer Imaging. 2024-4-11

[6]
Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study.

BMC Cancer. 2024-4-5

[7]
The radiomics-clinical nomogram for predicting the response to initial superselective arterial embolization in renal angiomyolipoma, a preliminary study.

Front Oncol. 2024-3-5

[8]
Radiomics nomogram for preoperative differentiation of early-stage serous borderline ovarian tumors and serous malignant ovarian tumors.

Front Oncol. 2024-1-15

[9]
Scientific Status Quo of Small Renal Lesions: Diagnostic Assessment and Radiomics.

J Clin Med. 2024-1-18

[10]
Building nonenhanced CT based radiomics model in discriminating arteriovenous malformation related hematomas from hypertensive intracerebral hematomas.

Front Neurosci. 2023-11-28

本文引用的文献

[1]
Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade.

Eur J Radiol. 2018-10-5

[2]
Differentiation of clear cell and non-clear cell renal cell carcinomas by all-relevant radiomics features from multiphase CT: a VHL mutation perspective.

Eur Radiol. 2018-12-6

[3]
Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation.

Eur J Radiol. 2018-8-16

[4]
Differentiation of Predominantly Solid Enhancing Lipid-Poor Renal Cell Masses by Use of Contrast-Enhanced CT: Evaluating the Role of Texture in Tumor Subtyping.

AJR Am J Roentgenol. 2018-9-21

[5]
Renal Angiomyolipoma: The Good, the Bad, and the Ugly.

J Belg Soc Radiol. 2018-4-20

[6]
A Decision-Support Tool for Renal Mass Classification.

J Digit Imaging. 2018-12

[7]
CT-based radiomic model predicts high grade of clear cell renal cell carcinoma.

Eur J Radiol. 2018-4-11

[8]
The different faces of renal angiomyolipomas on radiologic imaging: a pictorial review.

Br J Radiol. 2018-4

[9]
Chemical shift magnetic resonance imaging for distinguishing minimal-fat renal angiomyolipoma from renal cell carcinoma: a meta-analysis.

Eur Radiol. 2017-11-24

[10]
Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.

Eur Radiol. 2017-11-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索