Suppr超能文献

基于 CT 的影像组学列线图,用于区分无可见脂肪的肾血管平滑肌脂肪瘤与均质透明细胞肾细胞癌。

A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma.

机构信息

Radiology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.

PET-CT Center, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266061, Shandong, China.

出版信息

Eur Radiol. 2020 Feb;30(2):1274-1284. doi: 10.1007/s00330-019-06427-x. Epub 2019 Sep 10.

Abstract

OBJECTIVES

To develop and validate a radiomics nomogram for preoperative differentiating renal angiomyolipoma without visible fat (AML.wovf) from homogeneous clear cell renal cell carcinoma (hm-ccRCC).

METHODS

Ninety-nine patients with AML.wovf (n = 36) and hm-ccRCC (n = 63) were divided into a training set (n = 80) and a validation set (n = 19). Radiomics features were extracted from corticomedullary phase and nephrographic phase CT images. A radiomics signature was constructed and a radiomics score (Rad-score) was calculated. Demographics and CT findings were assessed to build a clinical factors model. Combined with the Rad-score and independent clinical factors, a radiomics nomogram was constructed. Nomogram performance was assessed with respect to calibration, discrimination, and clinical usefulness.

RESULTS

Fourteen features were used to build the radiomics signature. The radiomics signature showed good discrimination in the training set (AUC [area under the curve], 0.879; 95%; confidence interval [CI], 0.793-0.966) and the validation set (AUC, 0.846; 95% CI, 0.643-1.000). The radiomics nomogram showed good calibration and discrimination in the training set (AUC, 0.896; 95% CI, 0.810-0.983) and the validation set (AUC, 0.949; 95% CI, 0.856-1.000) and showed better discrimination capability (p < 0.05) compared with the clinical factor model (AUC, 0.788; 95% CI, 0.683-0.893) in the training set. Decision curve analysis demonstrated the nomogram outperformed the clinical factors model and radiomics signature in terms of clinical usefulness.

CONCLUSIONS

The CT-based radiomics nomogram, a noninvasive preoperative prediction tool that incorporates the Rad-score and clinical factors, shows favorable predictive efficacy for differentiating AML.wovf from hm-ccRCC, which might assist clinicians in tailoring precise therapy.

KEY POINTS

• Differential diagnosis between AML.wovf and hm-ccRCC is rather difficult by conventional imaging modalities. • A radiomics nomogram integrated with the radiomics signature, demographics, and CT findings facilitates differentiation of AML.wovf from hm-ccRCC with improved diagnostic efficacy. • The CT-based radiomics nomogram might spare unnecessary surgery for AML.wovf.

摘要

目的

建立并验证一种用于术前鉴别无脂肪肾血管平滑肌脂肪瘤(AML.wovf)与均质透明细胞肾细胞癌(hm-ccRCC)的影像组学列线图。

方法

将 99 例 AML.wovf(n=36)和 hm-ccRCC(n=63)患者分为训练集(n=80)和验证集(n=19)。从皮质期和肾实质期 CT 图像中提取影像组学特征。构建影像组学特征并计算影像组学评分(Rad-score)。评估患者的临床资料和 CT 表现,以构建临床因素模型。将 Rad-score 与独立的临床因素相结合,构建影像组学列线图。通过校准、判别和临床实用性来评估列线图的性能。

结果

采用 14 个特征构建影像组学特征。在训练集(AUC[曲线下面积],0.879;95%置信区间[CI],0.793-0.966)和验证集(AUC,0.846;95%CI,0.643-1.000)中,该影像组学特征显示出良好的鉴别能力。影像组学列线图在训练集(AUC,0.896;95%CI,0.810-0.983)和验证集(AUC,0.949;95%CI,0.856-1.000)中具有良好的校准和判别能力,且在训练集的判别能力优于临床因素模型(AUC,0.788;95%CI,0.683-0.893)(p<0.05)。决策曲线分析表明,该列线图在临床实用性方面优于临床因素模型和影像组学特征。

结论

基于 CT 的影像组学列线图是一种非侵入性的术前预测工具,整合了 Rad-score 和临床因素,对鉴别 AML.wovf 和 hm-ccRCC 具有良好的预测效果,有助于临床医生制定精确的治疗方案。

关键点

  • 传统影像学方法鉴别 AML.wovf 和 hm-ccRCC 较为困难。

  • 一种整合了影像组学特征、临床资料和 CT 表现的影像组学列线图,有助于提高 AML.wovf 和 hm-ccRCC 的鉴别诊断效能。

  • 基于 CT 的影像组学列线图可以避免对 AML.wovf 的不必要手术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验