Suppr超能文献

用于检测组织各向异性的基于光纤的手持式偏振光声计算机断层扫描

Optical fiber-based handheld polarized photoacoustic computed tomography for detecting anisotropy of tissues.

作者信息

Ren Yaguang, Zhang Ying, He Honghui, Liu Liangjian, Wu Xiaojun, Song Liang, Liu Chengbo

机构信息

Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an, China.

出版信息

Quant Imaging Med Surg. 2022 Apr;12(4):2238-2246. doi: 10.21037/qims-21-658.

Abstract

BACKGROUND

Photoacoustic computed tomography (PACT) is a fast-developing biomedical imaging modality and has immense potential for clinical translation. It utilizes laser excitation and acoustic detection to achieve high spatial resolution and considerable imaging depth in biological tissues. Current PACT primarily treats the absorption coefficient of tissues as a scalar variable while reconstructing the image, which limits its use for anisotropic evaluation of the tissues. Thus, by incorporating polarized imaging methods to evaluate anisotropy, applications of PACT can be further enhanced. So far, dichroism-sensitive PACT has been suggested for polarization detection of biological tissues. However, this approach is unsuitable for intraoperative imaging, since high-power spatial light is needed for excitation, which is dangerous and inconvenient to operate. Thus, there is a need to develop a polarized PACT system suitable for clinical use.

METHODS

Herein, we have proposed a specially designed handheld polarized PACT (HP-PACT) system, which was designed to promote intraoperative anisotropy detection of biological tissues. Excitation light was delivered by an optical fiber and reshaped by a compact set of lenses at the output end of the optical fiber. A polarizer was applied to generate linearly polarized light, and the polarization direction was adjusted by simply rotating the half-wave plate. Photoacoustic imaging (PAI) using excitation with several different polarization directions was carried out. Optical axes and the structure of the anisotropic objects were obtained using the principle of polarization detection with the PAI.

RESULTS

We experimentally demonstrated the performance of HP-PACT by imaging both the polarized and unpolarized plastic films. The results showed that HP-PACT can successfully detect the direction of the optical axes of polarized plastic films and has the ability to image at different depths. When linearly polarized light with different polarization directions was used as excitation, PAI studies on a highly anisotropic bovine tendon and relatively low anisotropic mouse leg showed the structural differences between the 2 tissues. The quantified degrees of anisotropy of the bovine tendon and mouse legs were 0.6 and 0.3, respectively.

CONCLUSIONS

The proposed HP-PACT is able to determine the anisotropic substances' optical axes and distinguish anisotropic substances from isotropic ones. Thus, HP-PACT has the potential for intraoperative diagnosis and treatment of anisotropic tissues, including nerves and tendons.

摘要

背景

光声计算机断层扫描(PACT)是一种快速发展的生物医学成像模式,在临床转化方面具有巨大潜力。它利用激光激发和声检测在生物组织中实现高空间分辨率和可观的成像深度。当前的PACT在重建图像时主要将组织的吸收系数视为标量变量,这限制了其在组织各向异性评估中的应用。因此,通过结合偏振成像方法来评估各向异性,可以进一步拓展PACT的应用。到目前为止,已提出利用对二向色性敏感的PACT进行生物组织的偏振检测。然而,这种方法不适用于术中成像,因为激发需要高功率空间光,既危险又操作不便。因此,需要开发一种适用于临床的偏振PACT系统。

方法

在此,我们提出了一种专门设计的手持式偏振PACT(HP-PACT)系统,旨在促进生物组织术中各向异性检测。激发光通过光纤传输,并在光纤输出端由一组紧凑的透镜进行重塑。使用偏振器产生线偏振光,通过简单旋转半波片来调整偏振方向。利用具有不同偏振方向的激发光进行光声成像(PAI)。根据PAI的偏振检测原理获取各向异性物体的光轴和结构。

结果

我们通过对偏振和非偏振塑料薄膜成像,实验证明了HP-PACT的性能。结果表明,HP-PACT能够成功检测偏振塑料薄膜的光轴方向,并具有在不同深度成像的能力。当使用具有不同偏振方向的线偏振光作为激发光时,对高度各向异性的牛肌腱和相对低各向异性的小鼠腿部进行的PAI研究显示了这两种组织之间的结构差异。牛肌腱和小鼠腿部的各向异性量化程度分别为0.6和0.3。

结论

所提出的HP-PACT能够确定各向异性物质的光轴,并区分各向异性物质和各向同性物质。因此,HP-PACT在包括神经和肌腱在内的各向异性组织的术中诊断和治疗方面具有潜力。

相似文献

1
Optical fiber-based handheld polarized photoacoustic computed tomography for detecting anisotropy of tissues.
Quant Imaging Med Surg. 2022 Apr;12(4):2238-2246. doi: 10.21037/qims-21-658.
2
Dichroism-sensitive photoacoustic computed tomography.
Optica. 2018 Apr 20;5(4):495-501. doi: 10.1364/OPTICA.5.000495. Epub 2018 Apr 18.
3
Adaptive polarization photoacoustic computed tomography for biological anisotropic tissue imaging.
Photoacoustics. 2023 Aug 9;32:100543. doi: 10.1016/j.pacs.2023.100543. eCollection 2023 Aug.
4
Application of photoacoustic computed tomography in biomedical imaging: A literature review.
Bioeng Transl Med. 2022 Sep 29;8(2):e10419. doi: 10.1002/btm2.10419. eCollection 2023 Mar.
5
Polarized photoacoustic microscopy based on high-order harmonics for anisotropy detection.
Ann Transl Med. 2022 Mar;10(6):293. doi: 10.21037/atm-22-794.
6
Challenges and advances in two-dimensional photoacoustic computed tomography: a review.
J Biomed Opt. 2024 Jul;29(7):070901. doi: 10.1117/1.JBO.29.7.070901. Epub 2024 Jul 12.
7
Progress of clinical translation of handheld and semi-handheld photoacoustic imaging.
Photoacoustics. 2021 Mar 19;22:100264. doi: 10.1016/j.pacs.2021.100264. eCollection 2021 Jun.
8
3D Monte Carlo simulation of light distribution in mouse brain in quantitative photoacoustic computed tomography.
Quant Imaging Med Surg. 2021 Mar;11(3):1046-1059. doi: 10.21037/qims-20-815.
9
Polarized photoacoustic microscopy for vectorial-absorption-based anisotropy detection.
Opt Lett. 2018 Nov 1;43(21):5267-5270. doi: 10.1364/OL.43.005267.
10
Single-shot linear dichroism optical-resolution photoacoustic microscopy.
Photoacoustics. 2019 Nov 19;16:100148. doi: 10.1016/j.pacs.2019.100148. eCollection 2019 Dec.

引用本文的文献

1
Photoacoustic method for measuring the elasticity of polydimethylsiloxane at various mixing ratios.
Heliyon. 2024 May 22;10(11):e31726. doi: 10.1016/j.heliyon.2024.e31726. eCollection 2024 Jun 15.
2
Multispectral Optoacoustic Tomography Enables In Vivo Anatomical and Functional Assessment of Human Tendons.
Adv Sci (Weinh). 2024 May;11(18):e2308336. doi: 10.1002/advs.202308336. Epub 2024 Mar 6.
3
Photoacoustic imaging plus X: a review.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11513. doi: 10.1117/1.JBO.29.S1.S11513. Epub 2023 Dec 28.

本文引用的文献

1
Photoacoustic imaging in evaluating early intestinal ischemia injury and reperfusion injury in rat models.
Quant Imaging Med Surg. 2021 Jul;11(7):2968-2979. doi: 10.21037/qims-20-1160.
2
Regional motion correction for photoacoustic imaging in humans using interleaved ultrasound images.
Biomed Opt Express. 2021 May 12;12(6):3312-3322. doi: 10.1364/BOE.421644. eCollection 2021 Jun 1.
4
Photoacoustic imaging as a highly efficient and precise imaging strategy for the evaluation of brain diseases.
Quant Imaging Med Surg. 2021 May;11(5):2169-2186. doi: 10.21037/qims-20-845.
5
Portable and Affordable Light Source-Based Photoacoustic Tomography.
Sensors (Basel). 2020 Oct 29;20(21):6173. doi: 10.3390/s20216173.
6
Manganese(II) Texaphyrin: A Paramagnetic Photoacoustic Contrast Agent Activated by Near-IR Light.
J Am Chem Soc. 2020 Sep 23;142(38):16156-16160. doi: 10.1021/jacs.0c04387. Epub 2020 Sep 11.
8
Towards clinical photoacoustic and ultrasound imaging: Probe improvement and real-time graphical user interface.
Exp Biol Med (Maywood). 2020 Feb;245(4):321-329. doi: 10.1177/1535370219889968. Epub 2020 Jan 9.
9
Single-shot linear dichroism optical-resolution photoacoustic microscopy.
Photoacoustics. 2019 Nov 19;16:100148. doi: 10.1016/j.pacs.2019.100148. eCollection 2019 Dec.
10
A review of clinical photoacoustic imaging: Current and future trends.
Photoacoustics. 2019 Nov 7;16:100144. doi: 10.1016/j.pacs.2019.100144. eCollection 2019 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验