Trayford Chloe, Crosbie Darragh, Rademakers Timo, van Blitterswijk Clemens, Nuijts Rudy, Ferrari Stefano, Habibovic Pamela, LaPointe Vanessa, Dickman Mor, van Rijt Sabine
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
Department of Ophthalmology, University Eye Clinic Maastricht, University Medical Center+, P. Debyelaan 25, 6202 AZ Maastricht, The Netherlands.
ACS Appl Nano Mater. 2022 Mar 25;5(3):3237-3251. doi: 10.1021/acsanm.1c03640. Epub 2022 Mar 14.
Stem cell (SC)-based therapies hold the potential to revolutionize therapeutics by enhancing the body's natural repair processes. Currently, there are only three SC therapies with marketing authorization within the European Union. To optimize outcomes, it is important to understand the biodistribution and behavior of transplanted SCs in vivo. A variety of imaging agents have been developed to trace SCs; however, they mostly lack the ability to simultaneously monitor the SC function and biodistribution at high resolutions. Here, we report the synthesis and application of a nanoparticle (NP) construct consisting of a gold NP core coated with rhodamine B isothiocyanate (RITC)-doped mesoporous silica (AuMS). The MS layer further contained a thiol-modified internal surface and an amine-modified external surface for dye conjugation. Highly fluorescent AuMS of three different sizes were successfully synthesized. The NPs were non-toxic and efficiently taken up by limbal epithelial SCs (LESCs). We further showed that we can functionalize AuMS with a reactive oxygen species (ROS)-sensitive fluorescent dye using two methods, loading the probe into the mesopores, with or without additional capping by a lipid bilayer, and by covalent attachment to surface and/or mesoporous-functionalized thiol groups. All four formulations displayed a ROS concentration-dependent increase in fluorescence. Further, in an ex vivo SC transplantation model, a combination of optical coherence tomography and fluorescence microscopy was used to synergistically identify AuMS-labeled LESC distribution at micrometer resolution. Our AuMS constructs allow for multimodal imaging and simultaneous ROS sensing of SCs and represent a promising tool for in vivo SC tracing.
基于干细胞(SC)的疗法有望通过增强人体自然修复过程来彻底改变治疗方法。目前,在欧盟范围内仅有三种获得上市许可的干细胞疗法。为了优化治疗效果,了解移植的干细胞在体内的生物分布和行为非常重要。已经开发了多种成像剂来追踪干细胞;然而,它们大多缺乏在高分辨率下同时监测干细胞功能和生物分布的能力。在此,我们报告了一种纳米颗粒(NP)构建体的合成与应用,该构建体由包覆有罗丹明B异硫氰酸酯(RITC)掺杂的介孔二氧化硅(AuMS)的金纳米颗粒核心组成。介孔二氧化硅层还包含用于染料偶联的硫醇修饰的内表面和胺修饰的外表面。成功合成了三种不同尺寸的高荧光AuMS。这些纳米颗粒无毒且能被角膜缘上皮干细胞(LESC)有效摄取。我们进一步表明,我们可以使用两种方法用活性氧(ROS)敏感的荧光染料对AuMS进行功能化,即将探针加载到介孔中,有无脂质双层额外封端,以及通过共价连接到表面和/或介孔功能化的硫醇基团上。所有四种制剂都显示出荧光随ROS浓度的增加。此外,在体外干细胞移植模型中,结合光学相干断层扫描和荧光显微镜,以协同方式在微米分辨率下识别AuMS标记的LESC分布。我们的AuMS构建体允许对干细胞进行多模态成像和同时进行ROS传感,是一种用于体内干细胞追踪的有前途的工具。