Suppr超能文献

利用谷歌地图的类别级常识解决标签稀疏问题。

Addressing Label Sparsity With Class-Level Common Sense for Google Maps.

作者信息

Welty Chris, Aroyo Lora, Korn Flip, McCarthy Sara M, Zhao Shubin

机构信息

Google Research, New York, NY, United States.

出版信息

Front Artif Intell. 2022 Mar 16;5:830299. doi: 10.3389/frai.2022.830299. eCollection 2022.

Abstract

Successful knowledge graphs (KGs) solved the historical knowledge acquisition bottleneck by supplanting the previous expert focus with a simple, crowd-friendly one: KG nodes represent popular people, places, organizations, etc., and the graph arcs represent common sense relations like affiliations, locations, etc. Techniques for more general, categorical, KG curation do not seem to have made the same transition: the KG research community is still largely focused on logic-based methods that belie the common-sense characteristics of successful KGs. In this paper, we propose a simple yet novel three-tier crowd approach to acquiring that represent broad common sense associations between categories, and can be used with the classic knowledge-base default & override technique, to address the early faced by machine learning systems for problems that lack data for training. We demonstrate the effectiveness of our acquisition and reasoning approach on a pair of very real industrial-scale problems: how to augment an existing KG of places and offerings (e.g. stores and products, restaurants and dishes) with associations between them indicating the availability of the offerings at those places. Label sparsity is a general problem, and not specific to these use cases, that prevents modern AI and machine learning techniques from applying to many applications for which labeled data is not readily available. As a result, the study of how to acquire the knowledge and data needed for AI to work is as much a problem today as it was in the 1970s and 80s during the advent of expert systems. Our approach was a critical part of enabling a worldwide capability on Google Maps, with which users can find products and dishes that are available in most places on earth.

摘要

成功的知识图谱(KGs)通过用一种简单且对大众友好的方式取代先前对专家的关注,解决了历史知识获取瓶颈:KG节点代表知名人物、地点、组织等,图弧代表诸如隶属关系、位置等常识关系。用于更通用、分类的KG管理的技术似乎并未实现同样的转变:KG研究社区仍主要专注于基于逻辑的方法,这些方法与成功KG的常识特征不符。在本文中,我们提出一种简单却新颖的三层大众方法来获取表示类别之间广泛常识关联的内容,并且可以与经典知识库的默认及覆盖技术一起使用,以解决机器学习系统在面对缺乏训练数据的问题时早期遇到的情况。我们在一对非常实际的工业规模问题上展示了我们的获取和推理方法的有效性:如何用表示这些地方有相应供应的关联来扩充现有的地点和供应(如商店和产品、餐厅和菜肴)的KG。标签稀疏是一个普遍问题,并非特定于这些用例,它阻碍了现代人工智能和机器学习技术应用于许多难以轻易获得标注数据的应用。因此,研究如何获取人工智能运行所需的知识和数据,如今仍是一个与20世纪70年代和80年代专家系统出现时一样棘手的问题。我们的方法是在谷歌地图上实现全球范围内这一功能的关键部分,通过该功能用户可以找到地球上大多数地方都有的产品和菜肴。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b70/8967349/74893f0d6e88/frai-05-830299-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验