Suppr超能文献

用于知识图谱推理的神经符号人工智能:一项综述。

Neurosymbolic AI for Reasoning Over Knowledge Graphs: A Survey.

作者信息

DeLong Lauren Nicole, Mir Ramon Fernandez, Fleuriot Jacques D

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 May;36(5):7822-7842. doi: 10.1109/TNNLS.2024.3420218. Epub 2025 May 2.

Abstract

Neurosymbolic artificial intelligence (AI) is an increasingly active area of research that combines symbolic reasoning methods with deep learning to leverage their complementary benefits. As knowledge graphs (KGs) are becoming a popular way to represent heterogeneous and multirelational data, methods for reasoning on graph structures have attempted to follow this neurosymbolic paradigm. Traditionally, such approaches have utilized either rule-based inference or generated representative numerical embeddings from which patterns could be extracted. However, several recent studies have attempted to bridge this dichotomy to generate models that facilitate interpretability, maintain competitive performance, and integrate expert knowledge. Therefore, we survey methods that perform neurosymbolic reasoning tasks on KGs and propose a novel taxonomy by which we can classify them. Specifically, we propose three major categories: 1) logically informed embedding approaches; 2) embedding approaches with logical constraints; and 3) rule-learning approaches. Alongside the taxonomy, we provide a tabular overview of the approaches and links to their source code, if available, for more direct comparison. Finally, we discuss the unique characteristics and limitations of these methods and then propose several prospective directions toward which this field of research could evolve.

摘要

神经符号人工智能(AI)是一个日益活跃的研究领域,它将符号推理方法与深度学习相结合,以利用它们的互补优势。随着知识图谱(KGs)成为表示异构和多关系数据的流行方式,用于图结构推理的方法也试图遵循这种神经符号范式。传统上,此类方法要么利用基于规则的推理,要么生成可从中提取模式的代表性数值嵌入。然而,最近的几项研究试图弥合这种二分法,以生成有助于可解释性、保持竞争力的性能并整合专家知识的模型。因此,我们对在知识图谱上执行神经符号推理任务的方法进行了调查,并提出了一种新颖的分类法,通过该分类法我们可以对它们进行分类。具体来说,我们提出了三大类:1)逻辑 informed 嵌入方法;2)具有逻辑约束的嵌入方法;3)规则学习方法。除了分类法之外,我们还提供了这些方法的表格概述以及指向其源代码的链接(如果可用),以便进行更直接的比较。最后,我们讨论了这些方法的独特特征和局限性,然后提出了该研究领域可能发展的几个前瞻性方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验