Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
Cell Mol Life Sci. 2022 Apr 4;79(4):222. doi: 10.1007/s00018-022-04255-9.
Alzheimer's disease (AD) is characterized by progressive cognitive decline due to accumulating synaptic insults by toxic oligomers of amyloid beta (AβO) and tau (TauO). There is growing consensus that preventing these oligomers from interacting with synapses might be an effective approach to treat AD. However, recent clinical trial failures suggest low effectiveness of targeting Aβ in late-stage AD. Researchers have redirected their attention toward TauO as the levels of this species increase later in disease pathogenesis. Here we show that AβO and TauO differentially target synapses and affect each other's binding dynamics.
Binding of labeled, pre-formed Aβ and tau oligomers onto synaptosomes isolated from the hippocampus and frontal cortex of mouse and postmortem cognitively intact elderly human brains was evaluated using flow-cytometry and western blot analyses. Binding of labeled, pre-formed Aβ and tau oligomers onto mouse primary neurons was assessed using immunofluorescence assay. The synaptic dysfunction was measured by fluorescence analysis of single-synapse long-term potentiation (FASS-LTP) assay.
We demonstrated that higher TauO concentrations effectively outcompete AβO and become the prevailing synaptic-associated species. Conversely, high concentrations of AβO facilitate synaptic TauO recruitment. Immunofluorescence analyses of mouse primary cortical neurons confirmed differential synaptic binding dynamics of AβO and TauO. Moreover, in vivo experiments using old 3xTgAD mice ICV injected with either AβO or TauO fully supported these findings. Consistent with these observations, FASS-LTP analyses demonstrated that TauO-induced suppression of chemical LTP was exacerbated by AβO. Finally, predigestion with proteinase K abolished the ability of TauO to compete off AβO without affecting the ability of high AβO levels to increase synaptic TauO recruitment. Thus, unlike AβO, TauO effects on synaptosomes are hampered by the absence of protein substrate in the membrane.
These results introduce the concept that TauO become the main synaptotoxic species at late AD, thus supporting the hypothesis that TauO may be the most effective therapeutic target for clinically manifest AD.
阿尔茨海默病(AD)的特征是由于淀粉样β(Aβ)和 tau(Tau)的毒性寡聚物的突触损伤而导致认知能力进行性下降。越来越多的共识认为,防止这些寡聚体与突触相互作用可能是治疗 AD 的有效方法。然而,最近的临床试验失败表明,靶向 AD 晚期的 Aβ 效果较低。研究人员已将注意力重新转向 TauO,因为这种物质在疾病发病机制的后期水平增加。在这里,我们表明 AβO 和 TauO 以不同的方式靶向突触并影响彼此的结合动力学。
使用流式细胞术和 Western blot 分析评估标记的预形成 Aβ 和 tau 寡聚物与从小鼠海马体和额叶皮层以及从认知正常的老年人大脑分离的突触体的结合。使用免疫荧光测定法评估标记的预形成 Aβ 和 tau 寡聚物与小鼠原代神经元的结合。通过单突触长时程增强(FASS-LTP)测定的荧光分析测量突触功能障碍。
我们证明,较高的 TauO 浓度有效地与 AβO 竞争,成为主要的突触相关物质。相反,高浓度的 AβO 促进突触 TauO 的募集。使用小鼠原代皮质神经元的免疫荧光分析进一步证实了 AβO 和 TauO 的不同突触结合动力学。此外,使用 3xTgAD 小鼠的体内实验,ICV 注射 AβO 或 TauO 完全支持了这些发现。与这些观察结果一致,FASS-LTP 分析表明,TauO 诱导的化学 LTP 抑制作用因 AβO 而加剧。最后,蛋白酶 K 的预消化消除了 TauO 竞争 AβO 的能力,而不影响高 AβO 水平增加突触 TauO 募集的能力。因此,与 AβO 不同,TauO 对突触体的影响受到膜中缺乏蛋白质底物的阻碍。
这些结果提出了 TauO 成为 AD 晚期主要突触毒性物质的概念,从而支持 TauO 可能是治疗显性 AD 最有效的治疗靶点的假说。