Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch (UTMB), Galveston, Texas 77550.
Neuroscience Summer Undergraduate Program, University of Texas Medical Branch, Galveston, Texas 77555.
J Neurosci. 2021 Jan 20;41(3):538-554. doi: 10.1523/JNEUROSCI.0295-20.2020. Epub 2020 Nov 25.
Alzheimer's disease (AD) is characterized by progressive neurodegeneration in the cerebral cortex, histopathologically hallmarked by amyloid β (Aβ) extracellular plaques and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein. Correlation between these pathologic features and dementia has been challenged by the emergence of "nondemented with Alzheimer's neuropathology" (NDAN) individuals, cognitively intact despite displaying pathologic features of AD. The existence of these subjects suggests that some unknown mechanisms are triggered to resist Aβ-mediated detrimental events. Aβ accumulation affects mitochondrial redox balance, increasing oxidative stress status, which in turn is proposed as a primary culprit in AD pathogenesis. To clarify the relationship linking Aβ, oxidative stress, and cognitive impairment, we performed a comparative study on AD, NDAN, and aged-matched human postmortem frontal cortices of either sex. We quantitatively analyzed immunofluorescence distribution of oxidative damage markers, and of SOD2 (superoxide dismutase 2), PGC1α [peroxisome proliferator-activated receptor (PPAR) γ-coactivator 1α], PPARα, and catalase as key factors in antioxidant response, as well as the expression of miRNA-485, as a PGC1α upstream regulator. Our results confirm dramatic redox imbalance, associated with impaired antioxidant defenses in AD brain. By contrast, NDAN individuals display low oxidative damage, which is associated with high levels of scavenging systems, possibly resulting from a lack of PGC1α miRNA-485-related inhibition. Comparative analyses in neurons and astrocytes further highlighted cell-specific mechanisms to counteract redox imbalance. Overall, our data emphasize the importance of transcriptional and post-transcriptional regulation of antioxidant response in AD. This suggests that an efficient PGC1α-dependent "safety mechanism" may prevent Aβ-mediated oxidative stress, supporting neuroprotective therapies aimed at ameliorating defects in antioxidant response pathways in AD patients.
阿尔茨海默病(AD)的特征是大脑皮层的进行性神经退行性变,组织病理学上以淀粉样β(Aβ)细胞外斑块和细胞内神经原纤维缠结为特征,这些特征由过度磷酸化的tau 蛋白构成。这些病理特征与痴呆之间的相关性受到“具有阿尔茨海默病神经病理学但无痴呆(NDAN)”个体的出现所挑战,这些个体认知功能完整,但表现出 AD 的病理特征。这些研究对象的存在表明,一些未知的机制被触发以抵抗 Aβ 介导的有害事件。Aβ 积累会影响线粒体氧化还原平衡,增加氧化应激状态,这反过来被认为是 AD 发病机制的主要罪魁祸首。为了阐明 Aβ、氧化应激和认知障碍之间的关系,我们对 AD、NDAN 和年龄匹配的两性人类死后额皮质进行了比较研究。我们定量分析了氧化损伤标志物以及 SOD2(超氧化物歧化酶 2)、PGC1α [过氧化物酶体增殖物激活受体(PPAR)γ-共激活因子 1α]、PPARα 和过氧化氢酶的免疫荧光分布,这些都是抗氧化反应的关键因素,以及 miRNA-485 的表达,作为 PGC1α 的上游调节剂。我们的研究结果证实了 AD 大脑中剧烈的氧化还原失衡与抗氧化防御受损有关。相比之下,NDAN 个体显示出低氧化损伤,这与高水平的清除系统相关联,这可能是由于缺乏 PGC1α miRNA-485 相关的抑制作用所致。在神经元和星形胶质细胞中的比较分析进一步突出了细胞特异性机制来对抗氧化还原失衡。总的来说,我们的数据强调了 AD 中抗氧化反应的转录和转录后调控的重要性。这表明有效的 PGC1α 依赖性“安全机制”可能防止 Aβ 介导的氧化应激,支持旨在改善 AD 患者抗氧化反应途径缺陷的神经保护治疗。