State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China.
National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
Plant Physiol. 2022 Jun 1;189(2):772-789. doi: 10.1093/plphys/kiac135.
NARROW LEAF1 (NAL1) is an elite gene in rice (Oryza sativa), given its close connection to leaf photosynthesis, hybrid vigor, and yield-related agronomic traits; however, the underlying mechanism by which this gene affects these traits remains elusive. In this study, we systematically measured leaf photosynthetic parameters, leaf anatomical parameters, architectural parameters, and agronomic traits in indica cultivar 9311, in 9311 with the native NAL1 replaced by the Nipponbare NAL1 (9311-NIL), and in 9311 with the NAL1 fully mutated (9311-nal1). Leaf length, width, and spikelet number gradually increased from lowest to highest in 9311-nal1, 9311, and 9311-NIL. In contrast, the leaf photosynthetic rate on a leaf area basis, leaf thickness, and panicle number gradually decreased from highest to lowest in 9311-nal1, 9311, and 9311-NIL. RNA-seq analysis showed that NAL1 negatively regulates the expression of photosynthesis-related genes; NAL1 also influenced expression of many genes related to phytohormone signaling, as also shown by different leaf contents of 3-Indoleacetic acid, jasmonic acid, Gibberellin A3, and isopentenyladenine among these genotypes. Furthermore, field experiments with different planting densities showed that 9311 had a larger biomass and yield advantage under low planting density compared to either 9311-NIL or 9311-nall. This study shows both direct and indirect effects of NAL1 on leaf photosynthesis; furthermore, we show that a partially functional NAL1 allele helps maintain a balanced leaf photosynthesis and plant architecture for increased biomass and grain yield in the field.
窄叶 1 号(NAL1)是水稻(Oryza sativa)中的一个优势基因,因为它与叶片光合作用、杂种优势和与产量相关的农艺性状密切相关;然而,该基因影响这些性状的潜在机制仍不清楚。在这项研究中,我们系统地测量了籼稻品种 9311、9311 中天然 NAL1 被日本晴 NAL1 取代的 9311-NIL 以及 NAL1 完全突变的 9311-nal1 的叶片光合作用参数、叶片解剖学参数、结构参数和农艺性状。叶片长度、宽度和小穗数逐渐从 9311-nal1、9311 和 9311-NIL 中最低到最高增加。相比之下,基于叶面积的叶片光合速率、叶片厚度和穗数逐渐从 9311-nal1、9311 和 9311-NIL 中最高到最低减少。RNA-seq 分析表明,NAL1 负调控与光合作用相关基因的表达;NAL1 还影响与植物激素信号转导相关的许多基因的表达,不同基因型间的 3-吲哚乙酸、茉莉酸、赤霉素 A3 和异戊烯基腺嘌呤的叶片含量也表明了这一点。此外,不同种植密度的田间试验表明,与 9311-NIL 或 9311-nal1 相比,9311 在低密度种植下具有更大的生物量和产量优势。本研究表明 NAL1 对叶片光合作用有直接和间接的影响;此外,我们表明部分功能的 NAL1 等位基因有助于维持叶片光合作用和植物结构的平衡,从而在田间获得更高的生物量和产量。