Suppr超能文献

参与铁硫簇生物合成的半胱氨酸脱硫酶的结构多样性。

Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis.

作者信息

Fujishiro Takashi, Nakamura Ryosuke, Kunichika Kouhei, Takahashi Yasuhiro

机构信息

Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.

出版信息

Biophys Physicobiol. 2022 Feb 8;19:1-18. doi: 10.2142/biophysico.bppb-v19.0001. eCollection 2022.

Abstract

Cysteine desulfurases are pyridoxal-5'-phosphate (PLP)-dependent enzymes that mobilize sulfur derived from the l-cysteine substrate to the partner sulfur acceptor proteins. Three cysteine desulfurases, IscS, NifS, and SufS, have been identified in ISC, NIF, and SUF/SUF-like systems for iron-sulfur (Fe-S) cluster biosynthesis, respectively. These cysteine desulfurases have been investigated over decades, providing insights into shared/distinct catalytic processes based on two types of enzymes (type I: IscS and NifS, type II: SufS). This review summarizes the insights into the structural/functional varieties of bacterial and eukaryotic cysteine desulfurases involved in Fe-S cluster biosynthetic systems. In addition, an inactive cysteine desulfurase IscS paralog, which contains pyridoxamine-5'-phosphate (PMP), instead of PLP, is also described to account for its hypothetical function in Fe-S cluster biosynthesis involving this paralog. The structural basis for cysteine desulfurase functions will be a stepping stone towards understanding the diversity and evolution of Fe-S cluster biosynthesis.

摘要

半胱氨酸脱硫酶是依赖于磷酸吡哆醛(PLP)的酶,可将源自L-半胱氨酸底物的硫转移至伙伴硫受体蛋白。在用于铁硫(Fe-S)簇生物合成的ISC、NIF和SUF/SUF样系统中,分别鉴定出了三种半胱氨酸脱硫酶,即IscS、NifS和SufS。几十年来,对这些半胱氨酸脱硫酶进行了研究,基于两种类型的酶(I型:IscS和NifS,II型:SufS),深入了解了共同/不同的催化过程。本综述总结了对参与Fe-S簇生物合成系统的细菌和真核生物半胱氨酸脱硫酶的结构/功能多样性的见解。此外,还描述了一种无活性的半胱氨酸脱硫酶IscS旁系同源物,其含有磷酸吡哆胺(PMP)而非PLP,以解释其在涉及该旁系同源物的Fe-S簇生物合成中的假定功能。半胱氨酸脱硫酶功能的结构基础将是理解Fe-S簇生物合成的多样性和进化的垫脚石。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b105/8918507/3eadfd67b89a/19_e190001-g001.jpg

相似文献

1
Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis.
Biophys Physicobiol. 2022 Feb 8;19:1-18. doi: 10.2142/biophysico.bppb-v19.0001. eCollection 2022.
2
Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors.
Biochim Biophys Acta. 2015 Jun;1853(6):1470-80. doi: 10.1016/j.bbamcr.2014.10.018. Epub 2014 Oct 27.
5
Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues.
J Biol Chem. 2019 Aug 16;294(33):12444-12458. doi: 10.1074/jbc.RA119.009471. Epub 2019 Jun 27.
6
IscS from Archaeoglobus fulgidus has no desulfurase activity but may provide a cysteine ligand for [Fe2S2] cluster assembly.
Biochim Biophys Acta. 2015 Jun;1853(6):1457-63. doi: 10.1016/j.bbamcr.2014.10.015. Epub 2014 Oct 28.
7
Cycloserine enantiomers inhibit PLP-dependent cysteine desulfurase SufS via distinct mechanisms.
FEBS J. 2022 Oct;289(19):5947-5970. doi: 10.1111/febs.16455. Epub 2022 Apr 17.
9
CyaY and TusA regulate ISC- and SUF-mediated l-cysteine desulfurase activity.
RSC Chem Biol. 2024 Sep 27;5(11):1165-76. doi: 10.1039/d4cb00225c.
10
Interactions with sulfur acceptors modulate the reactivity of cysteine desulfurases and define their physiological functions.
Biochim Biophys Acta Mol Cell Res. 2024 Oct;1871(7):119794. doi: 10.1016/j.bbamcr.2024.119794. Epub 2024 Jul 19.

引用本文的文献

2
A Role for Two Conserved Arginine Residues in Protected Persulfide Transfer by SufE-Dependent SufS Cysteine Desulfurases.
Biochemistry. 2025 Jun 3;64(11):2467-2475. doi: 10.1021/acs.biochem.4c00705. Epub 2025 May 21.
4
Development of a Spectrophotometric Assay for the Cysteine Desulfurase from .
Antibiotics (Basel). 2025 Jan 26;14(2):129. doi: 10.3390/antibiotics14020129.
6
Mapping the IscR regulon sheds light on the regulation of iron homeostasis in .
Front Microbiol. 2024 Sep 30;15:1463854. doi: 10.3389/fmicb.2024.1463854. eCollection 2024.
7
Anaerobic respiration of host-derived methionine sulfoxide protects intracellular Salmonella from the phagocyte NADPH oxidase.
Cell Host Microbe. 2024 Mar 13;32(3):411-424.e10. doi: 10.1016/j.chom.2024.01.004. Epub 2024 Feb 1.
9
CysB Is a Key Regulator of the Antifungal Activity of JK-SH007.
Int J Mol Sci. 2023 Apr 29;24(9):8067. doi: 10.3390/ijms24098067.
10
Insights into Systems for Iron-Sulfur Cluster Biosynthesis in Acidophilic Microorganisms.
J Microbiol Biotechnol. 2022 Sep 28;32(9):1110-1119. doi: 10.4014/jmb.2206.06045. Epub 2022 Aug 19.

本文引用的文献

4
Methanosarcina acetivorans contains a functional ISC system for iron-sulfur cluster biogenesis.
BMC Microbiol. 2020 Oct 23;20(1):323. doi: 10.1186/s12866-020-02014-z.
5
Mechanistic concepts of iron-sulfur protein biogenesis in Biology.
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118863. doi: 10.1016/j.bbamcr.2020.118863. Epub 2020 Sep 30.
6
Fe-S cluster biogenesis by the bacterial Suf pathway.
Biochim Biophys Acta Mol Cell Res. 2020 Nov;1867(11):118829. doi: 10.1016/j.bbamcr.2020.118829. Epub 2020 Aug 18.
7
Reduction of Substrates by Nitrogenases.
Chem Rev. 2020 Jun 24;120(12):5082-5106. doi: 10.1021/acs.chemrev.9b00556. Epub 2020 Mar 16.
8
Structural evidence for a latch mechanism regulating access to the active site of SufS-family cysteine desulfurases.
Acta Crystallogr D Struct Biol. 2020 Mar 1;76(Pt 3):291-301. doi: 10.1107/S2059798320000790. Epub 2020 Feb 25.
9
Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases.
Chem Rev. 2020 Jun 24;120(12):5107-5157. doi: 10.1021/acs.chemrev.9b00704. Epub 2020 Mar 4.
10
Biosynthesis of Nitrogenase Cofactors.
Chem Rev. 2020 Jun 24;120(12):4921-4968. doi: 10.1021/acs.chemrev.9b00489. Epub 2020 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验