Suppr超能文献

两个保守精氨酸残基在依赖SufE的SufS半胱氨酸脱硫酶介导的受保护的过硫化物转移中的作用

A Role for Two Conserved Arginine Residues in Protected Persulfide Transfer by SufE-Dependent SufS Cysteine Desulfurases.

作者信息

Gogar Rajleen K, Conte Juliana V, Chhikara Nidhi, Dunkle Jack A, Frantom Patrick A

机构信息

Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.

出版信息

Biochemistry. 2025 Jun 3;64(11):2467-2475. doi: 10.1021/acs.biochem.4c00705. Epub 2025 May 21.

Abstract

Under stress conditions, iron-sulfur cluster biogenesis in is initiated by the cysteine desulfurase, SufS, via the SUF pathway. SufS is a type II cysteine desulfurase that catalyzes the PLP-dependent breakage of an l-cysteine C-S bond to generate l-alanine and a covalent active site persulfide. The cysteine desulfurase activity of SufS is activated by SufE, which accepts the covalent persulfide from SufS to regenerate the active site. Based on analysis of the SufS/SufE structure, it was hypothesized that two conserved arginine residues in the SufS active site, R56 and R359, could be important for persulfide transfer from SufS to SufE by regulating the positioning of the α3-α4 loop on SufS. To investigate this hypothesis, site-directed mutagenesis was used to obtain R56A/K and R359A/K SufS variants. Alanine substitution at either position caused defects to SufE-dependent SufS activity, with more conservative lysine substitutions resulting in varying levels of rescued activity. Fluorescence polarization binding assays showed that the loss of SufS activity was not due to a defect in forming the SufS/SufE complex. Surprisingly, the R359A substitution resulted in a 10-fold improvement in the value for complex formation. The structure of R359A SufS explains this result as it exhibits a conformational change in the α3-α4 loop allowing SufE better access to the SufS active site. Taken together, the kinetic, binding, and structural data support a mechanism where R359 plays a role in linking SufS catalysis with modulation of the α3-α4 loop to promote a close-approach interaction of SufS and SufE conducive to persulfide transfer.

摘要

在应激条件下,细胞内的铁硫簇生物合成由半胱氨酸脱硫酶SufS通过SUF途径启动。SufS是一种II型半胱氨酸脱硫酶,催化依赖于磷酸吡哆醛的L-半胱氨酸C-S键断裂,生成L-丙氨酸和一个共价活性位点过硫化物。SufS的半胱氨酸脱硫酶活性由SufE激活,SufE从SufS接受共价过硫化物以再生活性位点。基于对SufS/SufE结构的分析,推测SufS活性位点中的两个保守精氨酸残基R56和R359可能通过调节SufS上α3-α4环的位置,对过硫化物从SufS转移到SufE起重要作用。为了研究这一假设,采用定点诱变获得了R56A/K和R359A/K SufS变体。任一位置的丙氨酸取代都会导致SufE依赖的SufS活性出现缺陷,更保守的赖氨酸取代会导致不同程度的活性恢复。荧光偏振结合试验表明,SufS活性的丧失不是由于形成SufS/SufE复合物存在缺陷。令人惊讶的是,R359A取代导致复合物形成的解离常数提高了10倍。R359A SufS的结构解释了这一结果,因为它在α3-α4环上表现出构象变化,使SufE能够更好地接近SufS活性位点。综合起来,动力学、结合和结构数据支持了一种机制,即R359在将SufS催化与α3-α4环的调节联系起来,以促进SufS和SufE的近距离相互作用从而有利于过硫化物转移方面发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验