Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Madrid, Spain.
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2103745119. doi: 10.1073/pnas.2103745119. Epub 2022 Apr 4.
Body size and shape fundamentally determine organismal energy requirements by modulating heat and mass exchange with the environment and the costs of locomotion, thermoregulation, and maintenance. Ecologists have long used the physical linkage between morphology and energy balance to explain why the body size and shape of many organisms vary across climatic gradients, e.g., why larger endotherms are more common in colder regions. However, few modeling exercises have aimed at investigating this link from first principles. Body size evolution in bats contrasts with the patterns observed in other endotherms, probably because physical constraints on flight limit morphological adaptations. Here, we develop a biophysical model based on heat transfer and aerodynamic principles to investigate energy constraints on morphological evolution in bats. Our biophysical model predicts that the energy costs of thermoregulation and flight, respectively, impose upper and lower limits on the relationship of wing surface area to body mass (S-MR), giving rise to an optimal S-MR at which both energy costs are minimized. A comparative analysis of 278 species of bats supports the model’s prediction that S-MR evolves toward an optimal shape and that the strength of selection is higher among species experiencing greater energy demands for thermoregulation in cold climates. Our study suggests that energy costs modulate the mode of morphological evolution in bats—hence shedding light on a long-standing debate over bats’ conformity to ecogeographical patterns observed in other mammals—and offers a procedure for investigating complex macroecological patterns from first principles.
体型和形状通过调节与环境的热和物质交换以及运动、体温调节和维持的成本,从根本上决定了生物体的能量需求。生态学家长期以来一直利用形态和能量平衡之间的物理联系来解释为什么许多生物体的体型和形状会在气候梯度上发生变化,例如,为什么更大的温血动物在较冷的地区更为常见。然而,很少有建模练习旨在从第一性原理出发调查这种联系。蝙蝠的体型进化与其他温血动物观察到的模式形成对比,这可能是因为飞行对物理的限制限制了形态的适应。在这里,我们根据传热和空气动力学原理开发了一个生物物理模型,以研究蝙蝠形态进化中的能量限制。我们的生物物理模型预测,体温调节和飞行的能量成本分别对翅膀表面积与体重(S-MR)的关系施加了上限和下限,从而导致能量成本最小化的最佳 S-MR。对 278 种蝙蝠的比较分析支持了模型的预测,即 S-MR 朝着最佳形状进化,并且在寒冷气候下需要更多能量来调节体温的物种中,选择的强度更高。我们的研究表明,能量成本调节了蝙蝠形态进化的模式——从而阐明了关于蝙蝠是否符合其他哺乳动物观察到的生态地理模式的长期争论——并提供了一种从第一性原理研究复杂宏观生态模式的程序。