Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy.
Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy.
Biochim Biophys Acta Bioenerg. 2022 Jun 1;1863(5):148555. doi: 10.1016/j.bbabio.2022.148555. Epub 2022 Apr 2.
In land plants, both efficient light capture and photoprotective dissipation of chlorophyll excited states in excess require proper assembly of Photosystem II supercomplexes PSII-LHCs. These include a dimeric core moiety and a peripheral antenna system made of trimeric LHCII proteins connected to the core through monomeric LHC subunits. Regulation of light harvesting involves re-organization of the PSII supercomplex, including dissociation of its LHCII-CP24-CP29 domain under excess light. The Chl a603-a609-a616 chromophore cluster within CP29 was recently identified as responsible for the fast component of Non-Photochemical Quenching of chlorophyll fluorescence. Here, we pinpointed a chlorophyll-protein domain of CP29 involved in the macro-organization of PSII-LHCs. By complementing an Arabidopsis knock-out mutant with CP29 sequences deleted in the residue binding chlorophyll b614/b3-binding, we found that the site is promiscuous for chlorophyll a and b. By plotting NPQ amplitude vs. CP29 content we observed that quenching activity was significantly reduced in mutants compared to the wild type. Analysis of pigment-binding supercomplexes showed that the missing Chl did hamper the assembly of PSII-LHCs supercomplexes, while observation by electron microscopy of grana membranes highlighted the PSII particles were organized in two-dimensional arrays in mutant grana partitions. As an effect of such array formation electron transport rate between Q and Q reduced, likely due to restricted plastoquinone diffusion. We conclude that chlorophyll b614, rather being part of pigment cluster responsible for quenching, is needed to maintain full rate of electron flow in the thylakoids by controlling protein-protein interactions between PSII units in grana partitions.
在陆生植物中,高效的光捕获和过量叶绿素激发态的光保护耗散都需要适当组装 PSII-LHCs 的 PSII 超复合体。这些包括二聚核心部分和由三聚 LHCII 蛋白组成的外围天线系统,通过单体 LHC 亚基与核心连接。光捕获的调节涉及 PSII 超复合体的重新组织,包括在过量光下其 LHCII-CP24-CP29 结构域的解离。最近发现 CP29 中的 Chl a603-a609-a616 发色团簇是叶绿素荧光非光化学猝灭的快速成分的原因。在这里,我们确定了 CP29 中涉及 PSII-LHCs 宏观组织的叶绿素-蛋白结构域。通过用缺失在残基结合叶绿素 b614/b3 结合部位的 CP29 序列互补拟南芥敲除突变体,我们发现该位点对叶绿素 a 和 b 具有混杂性。通过绘制 NPQ 幅度与 CP29 含量的关系,我们观察到与野生型相比,猝灭活性在突变体中显著降低。对色素结合超复合体的分析表明,缺失的 Chl 确实阻碍了 PSII-LHCs 超复合体的组装,而电子显微镜观察到类囊体膜中的 grana 分区突出了 PSII 颗粒在突变体 grana 分区中以二维阵列排列。由于这种排列的形成,电子在 Q 和 Q 之间的传递速率降低,这可能是由于质体醌扩散受限所致。我们得出结论,叶绿素 b614 不是负责猝灭的色素簇的一部分,而是通过控制 grana 分区中 PSII 单元之间的蛋白质-蛋白质相互作用,来维持类囊体中电子流的全速。