Zschech Ehrenfried, Topal Emre, Kutukova Kristina, Gluch Jürgen, Löffler Markus, Werner Stephan, Guttmann Peter, Schneider Gerd, Liao Zhongquan, Timoshenko Janis
deepXscan GmbH, Dresden, Germany; Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany; Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany.
Micron. 2022 Jul;158:103262. doi: 10.1016/j.micron.2022.103262. Epub 2022 Mar 30.
The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline structure of electrocatalyst nanoparticles is characterized using transmission electron microscopy (TEM), supported by X-ray diffraction (XRD) and spatially resolved near-edge X-ray absorption fine structure (NEXAFS) studies. The high electrocatalytic efficiency for hydrogen evolution reaction (HER) of a novel transition-metal-based material system - MoNi electrocatalysts anchored on MoO cuboids aligned on Ni foam (MoNi/MoO@Ni) - is based on advantageous crystalline structures and chemical bonding. High-resolution TEM images and selected-area electron diffraction patterns are used to determine the crystalline structures of MoO and MoNi. Multi-scale XCT provides 3D information of the hierarchical morphology of the MoNi/MoO@Ni material system nondestructively: Micro-XCT images clearly resolve the Ni foam and the attached needle-like MoO micro cuboids. Laboratory nano-XCT shows that the MoO micro cuboids with a rectangular cross-section of 0.5 × 1 µm and a length of 10-20 µm are vertically arranged on the Ni foam. MoNi nanoparticles with a size of 20-100 nm, positioned on single MoO cuboids, were imaged using synchrotron radiation nano-XCT. The application of a deep convolutional neural network (CNN) significantly improves the reconstruction quality of the acquired data.
基于多尺度X射线计算机断层扫描(XCT)确定分层结构电催化系统的三维形态,并使用透射电子显微镜(TEM)对电催化剂纳米颗粒的晶体结构进行表征,辅以X射线衍射(XRD)和空间分辨近边X射线吸收精细结构(NEXAFS)研究。一种新型过渡金属基材料体系——锚定在泡沫镍上排列的MoO长方体上的MoNi电催化剂(MoNi/MoO@Ni)对析氢反应(HER)具有高电催化效率,这基于其有利的晶体结构和化学键。高分辨率TEM图像和选区电子衍射图案用于确定MoO和MoNi的晶体结构。多尺度XCT无损提供MoNi/MoO@Ni材料体系分层形态的三维信息:微观XCT图像清晰分辨出泡沫镍和附着的针状MoO微长方体。实验室纳米XCT显示,横截面为0.5×1 µm、长度为10 - 20 µm的矩形MoO微长方体垂直排列在泡沫镍上。使用同步辐射纳米XCT对位于单个MoO长方体上、尺寸为20 - 100 nm的MoNi纳米颗粒进行成像。深度卷积神经网络(CNN)的应用显著提高了采集数据的重建质量。