Suppr超能文献

用于量子点敏化太阳能电池的硒化铜(CuSe)薄膜的微波辅助水热合成

Microwave-assisted hydrothermal synthesis of copper selenides (CuSe) thin films for quantum dots-sensitized solar cells.

作者信息

Wang Baomei, Liu Xingna, Liu Zhen, Ma Zinan, Li Zhongwei, Wang Bingrui, Dong Xiao, Wang Yongyong, Song Xiaohui

机构信息

Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China.

Henan Key Laboratory of Infrared Materials & Spectrum Measurements and Applications, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China.

出版信息

J Phys Condens Matter. 2022 Apr 20;34(25). doi: 10.1088/1361-648X/ac640b.

Abstract

In this work, copper selenide (CuSe) thin films were grown on FTO conductive glass substrates using a facile microwave-assisted hydrothermal method. The effects of synthesis parameters such as precursor components and deposition time on the stoichiometry and morphology of the synthesized films were systematically investigated through different techniques including XRD, SEM, and AFM. In order to evaluate the electrochemical catalytic performance of the synthesized copper selenide in electrolyte containing the sulfide/polysulfide redox couple, we assembled liquid-junction quantum dots-sensitized solar cells (QDSSC) using the synthesized copper selenide thin films as counter electrodes and CdSe quantum dots-sensitized mesoporous TiOas photoanodes. Under the illumination of one Sun (100 mW cm), the QDSSC assembled with the optimal copper selenide CEs (Cu:Se = 1:1) exhibited a power conversion efficiency of 2.07%, which is much higher than that of traditional Pt counter electrode (0.76%).

摘要

在本工作中,采用简便的微波辅助水热法在FTO导电玻璃基板上生长了硒化铜(CuSe)薄膜。通过包括XRD、SEM和AFM在内的不同技术,系统研究了前驱体成分和沉积时间等合成参数对合成薄膜的化学计量和形貌的影响。为了评估合成的硒化铜在含有硫化物/多硫化物氧化还原对的电解质中的电化学催化性能,我们使用合成的硒化铜薄膜作为对电极,以CdSe量子点敏化的介孔TiO作为光阳极,组装了液结量子点敏化太阳能电池(QDSSC)。在一个太阳(100 mW cm)的光照下,用最佳硒化铜CEs(Cu:Se = 1:1)组装的QDSSC的功率转换效率为2.07%,远高于传统Pt对电极的功率转换效率(0.76%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验