Suppr超能文献

基于迭代最近点算法的三维蝶窦图像的法医鉴定。

Forensic Identification from Three-Dimensional Sphenoid Sinus Images Using the Iterative Closest Point Algorithm.

机构信息

West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.

Department of Computer Science, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.

出版信息

J Digit Imaging. 2022 Aug;35(4):1034-1040. doi: 10.1007/s10278-021-00572-w. Epub 2022 Apr 4.

Abstract

Forensic identification of human remains is crucial for legal, humanitarian, and civil reasons. Wide heterogeneity in sphenoid sinus morphology can be used for personal identification. This study aimed to propose a new protocol for personal identification based on three-dimensional (3D) reconstruction of sphenoid sinus CT images using Iterative Closest Point (ICP) algorithm. Seven hundred thirty-two patients which consisted of 348 females and 384 males were retrospectively included. The study sample includes 732 previous images as a source point set and 743 later ones as a scene target set. The sphenoid sinus computed tomography (CT) images were processed on a workstation (Dolphin imaging) to obtain 3D images and stored as a file format of Stereo lithography (.STL). Then, a Python library vtkplotter was used to transform the STL format to PLY format, which was adapted to Point Cloud Library (PCL). The ICP algorithm was used for point clouds matching. The metric Rank-N recognition rate was used for evaluation. The scene target set of 743 individuals was compared with the source point set of 732 individual models and achieved Rank-1 accuracy of 96.24%, Rank-2 accuracy of 99.73%, and Rank-3 accuracy of 100%. Our results indicated that the 3D point cloud registration of sphenoid sinuses was useful for assessing personal identification in forensic contexts.

摘要

法医学中对人类遗骸的鉴定具有重要的法律、人道和民事意义。蝶窦形态的广泛异质性可用于个人识别。本研究旨在提出一种新的基于迭代最近点(ICP)算法的蝶窦 CT 图像三维重建的个人识别方案。共回顾性纳入 732 例患者,其中女性 348 例,男性 384 例。研究样本包括 732 例原始图像作为源点集和 743 例后期图像作为场景目标集。蝶窦 CT 图像在工作站(Dolphin imaging)上进行处理,以获得三维图像并存储为 Stereo lithography(.STL)文件格式。然后,使用 Python 库 vtkplotter 将 STL 格式转换为 PLY 格式,再适应点云库(PCL)。使用 ICP 算法进行点云匹配。使用度量 Rank-N 识别率进行评估。将 743 个人的场景目标集与 732 个个体模型的源点集进行比较,获得了 96.24%的 Rank-1 准确率、99.73%的 Rank-2 准确率和 100%的 Rank-3 准确率。我们的结果表明,蝶窦的三维点云配准在法医学背景下评估个人识别是有用的。

相似文献

1
Forensic Identification from Three-Dimensional Sphenoid Sinus Images Using the Iterative Closest Point Algorithm.
J Digit Imaging. 2022 Aug;35(4):1034-1040. doi: 10.1007/s10278-021-00572-w. Epub 2022 Apr 4.
2
3
Contribution of the computed tomography of the anatomical aspects of the sphenoid sinuses to forensic identification.
J Neuroradiol. 2016 Dec;43(6):404-414. doi: 10.1016/j.neurad.2016.03.007. Epub 2016 Apr 12.
4
Automatic forensic identification using 3D sphenoid sinus segmentation and deep characterization.
Med Biol Eng Comput. 2020 Feb;58(2):291-306. doi: 10.1007/s11517-019-02050-6. Epub 2019 Dec 17.
5
Post-mortem X-ray computed tomography (PMCT) identification using ante-mortem CT-scan of the sphenoid sinus.
J Neuroradiol. 2019 Jul;46(4):248-255. doi: 10.1016/j.neurad.2018.08.003. Epub 2018 Sep 1.
6
Human identification performed with skull's sphenoid sinus based on deep learning.
Int J Legal Med. 2022 Jul;136(4):1067-1074. doi: 10.1007/s00414-021-02761-2. Epub 2022 Jan 13.
7
Analysis of sphenoid sinus and ethmoid sinus volume and asymmetry by sex: A 3D-CT study.
Surg Radiol Anat. 2024 May;46(5):551-558. doi: 10.1007/s00276-024-03319-8. Epub 2024 Feb 6.
8
Surgical measurement to sphenoid sinus for the Chinese in Asia based on CT using sagittal reconstruction images.
Eur Arch Otorhinolaryngol. 2011 Feb;268(2):241-6. doi: 10.1007/s00405-010-1373-1. Epub 2010 Sep 21.

引用本文的文献

2
Humanitarian forensic medicine: a systematic review.
Int J Legal Med. 2025 Mar;139(2):747-761. doi: 10.1007/s00414-024-03381-2. Epub 2024 Dec 2.
3
Identification score for robust and secure identification using ante- and post-mortem skull CT scans.
Int J Legal Med. 2025 Mar;139(2):639-649. doi: 10.1007/s00414-024-03361-6. Epub 2024 Nov 4.
4
Automatic personal identification using a single CT image.
Eur Radiol. 2025 May;35(5):2422-2433. doi: 10.1007/s00330-024-11013-x. Epub 2024 Aug 22.

本文引用的文献

1
Three-dimensional superimposition of digital models for individual identification.
Forensic Sci Int. 2021 Jan;318:110597. doi: 10.1016/j.forsciint.2020.110597. Epub 2020 Nov 26.
2
Automatic forensic identification using 3D sphenoid sinus segmentation and deep characterization.
Med Biol Eng Comput. 2020 Feb;58(2):291-306. doi: 10.1007/s11517-019-02050-6. Epub 2019 Dec 17.
3
4
A Review of Point Set Registration: From Pairwise Registration to Groupwise Registration.
Sensors (Basel). 2019 Mar 8;19(5):1191. doi: 10.3390/s19051191.
5
Post-mortem X-ray computed tomography (PMCT) identification using ante-mortem CT-scan of the sphenoid sinus.
J Neuroradiol. 2019 Jul;46(4):248-255. doi: 10.1016/j.neurad.2018.08.003. Epub 2018 Sep 1.
6
An innovative 3D-3D superimposition for assessing anatomical uniqueness of frontal sinuses through segmentation on CT scans.
Int J Legal Med. 2019 Jul;133(4):1159-1165. doi: 10.1007/s00414-018-1895-4. Epub 2018 Jul 23.
7
Automatic frontal sinus recognition in computed tomography images for person identification.
Forensic Sci Int. 2018 May;286:252-264. doi: 10.1016/j.forsciint.2018.03.029. Epub 2018 Mar 23.
9
Contribution of the computed tomography of the anatomical aspects of the sphenoid sinuses to forensic identification.
J Neuroradiol. 2016 Dec;43(6):404-414. doi: 10.1016/j.neurad.2016.03.007. Epub 2016 Apr 12.
10
Incidental sinonasal findings identified during preoperative evaluation for endoscopic transsphenoidal approaches.
Am J Rhinol Allergy. 2013 May-Jun;27(3):202-5. doi: 10.2500/ajra.2013.27.3871.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验