Suppr超能文献

使用单张CT图像进行自动个人身份识别。

Automatic personal identification using a single CT image.

作者信息

Heinrich Andreas

机构信息

Department of Radiology, Jena University Hospital-Friedrich Schiller University, Jena, Germany.

出版信息

Eur Radiol. 2025 May;35(5):2422-2433. doi: 10.1007/s00330-024-11013-x. Epub 2024 Aug 22.

Abstract

OBJECTIVES

Computer vision (CV) mimics human vision, enabling computers to automatically compare radiological images from recent examinations with a large image database for unique identification, crucial in emergency scenarios involving unknown patients or deceased individuals. This study aims to extend a CV-based personal identification method from orthopantomograms (OPGs) to computed tomography (CT) examinations using single CT slices.

METHODS

The study analyzed 819 cranial computed tomography (CCT) examinations from 722 individuals, focusing on single CT slices from six anatomical regions to explore their potential for CV-based personal identification in 69 procedures. CV automatically identifies and describes interesting features in images, which can be recognized in a reference image and then designated as matching points. In this study, the number of matching points was used as an indicator for identification.

RESULTS

Across six different regions, identification rates ranged from 41/69 (59%) to 69/69 (100%) across over 700 possible identities. Comparison of images from the same individual achieved higher matching points, averaging 6.32 ± 0.52% (100% represents the maximum possible matching points), while images of different individuals averaged 0.94 ± 0.15%. Reliable matching points are found in the teeth, maxilla, cervical spine, skull bones, and paranasal sinuses, with the maxillary sinuses and ethmoidal cells being particularly suitable for identification due to their abundant matching points.

CONCLUSION

Unambiguous identification of individuals based on a single CT slice is achievable, with maxillary sinus CT slices showing the highest identification rates. However, metal artifacts, especially from dental prosthetics, and various head positions can hinder identification.

CLINICAL RELEVANCE STATEMENT

Radiology possesses a multitude of reference images for a CV database, facilitating automated CV-based personal identification in emergency examinations or cases involving unknown deceased individuals. This enhances patient care and communication with relatives by granting access to medical history.

KEY POINTS

Unknown individuals in radiology or forensics pose challenges, addressed through automatic CV-based identification methods. A single CT slice highlighting the maxillary sinuses is particularly effective for personal identification. Radiology plays a pivotal role in automated personal identification by leveraging its extensive image database.

摘要

目的

计算机视觉(CV)模仿人类视觉,使计算机能够自动将近期检查的放射影像与大型影像数据库进行比较,以实现唯一识别,这在涉及身份不明患者或死者的紧急情况下至关重要。本研究旨在将基于计算机视觉的个人识别方法从曲面断层片(OPG)扩展到使用单层CT扫描的计算机断层扫描(CT)检查。

方法

该研究分析了来自722名个体的819例头颅计算机断层扫描(CCT)检查,重点关注六个解剖区域的单层CT扫描,以探索其在69例检查中基于计算机视觉进行个人识别的潜力。计算机视觉会自动识别并描述图像中的特征点,这些特征点可以在参考图像中被识别出来,然后被指定为匹配点。在本研究中,匹配点的数量被用作识别指标。

结果

在六个不同区域中,在700多个可能的身份中,识别率从41/69(59%)到69/69(100%)不等。同一人的图像比较获得了更高的匹配点,平均为6.32±0.52%(100%代表最大可能的匹配点),而不同人的图像平均为0.94±0.15%。在牙齿、上颌骨、颈椎、颅骨和鼻窦中发现了可靠的匹配点,其中上颌窦和筛窦由于匹配点丰富,特别适合用于识别。

结论

基于单层CT扫描实现个体的明确识别是可行的,上颌窦CT扫描的识别率最高。然而,金属伪影,尤其是来自假牙的伪影,以及各种头部位置可能会妨碍识别。

临床相关性声明

放射学拥有大量用于计算机视觉数据库的参考图像,有助于在紧急检查或涉及身份不明死者的案件中基于计算机视觉进行自动个人识别。这通过获取病史增强了患者护理以及与亲属的沟通。

关键点

放射学或法医学中的身份不明个体带来了挑战,可通过基于计算机视觉的自动识别方法来解决。突出上颌窦的单层CT扫描对个人识别特别有效。放射学通过利用其广泛的图像数据库在自动个人识别中发挥关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9714/12021953/1d20998d9abf/330_2024_11013_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验