Suppr超能文献

机器学习策略识别:一种高保真度揭示决策策略的范例。

Machine learning strategy identification: A paradigm to uncover decision strategies with high fidelity.

机构信息

Department of Psychology, Syracuse University, Syracuse, NY, USA.

CAS Key Laboratory for Behavioral Science, Chinese Academy of Sciences, Beijing, China.

出版信息

Behav Res Methods. 2023 Jan;55(1):263-284. doi: 10.3758/s13428-022-01828-1. Epub 2022 Apr 4.

Abstract

We propose a novel approach, which we call machine learning strategy identification (MLSI), to uncovering hidden decision strategies. In this approach, we first train machine learning models on choice and process data of one set of participants who are instructed to use particular strategies, and then use the trained models to identify the strategies employed by a new set of participants. Unlike most modeling approaches that need many trials to identify a participant's strategy, MLSI can distinguish strategies on a trial-by-trial basis. We examined MLSI's performance in three experiments. In Experiment I, we taught participants three different strategies in a paired-comparison decision task. The best machine learning model identified the strategies used by participants with an accuracy rate above 90%. In Experiment II, we compared MLSI with the multiple-measure maximum likelihood (MM-ML) method that is also capable of integrating multiple types of data in strategy identification, and found that MLSI had higher identification accuracy than MM-ML. In Experiment III, we provided feedback to participants who made decisions freely in a task environment that favors the non-compensatory strategy take-the-best. The trial-by-trial results of MLSI show that during the course of the experiment, most participants explored a range of strategies at the beginning, but eventually learned to use take-the-best. Overall, the results of our study demonstrate that MLSI can identify hidden strategies on a trial-by-trial basis and with a high level of accuracy that rivals the performance of other methods that require multiple trials for strategy identification.

摘要

我们提出了一种新的方法,称为机器学习策略识别(MLSI),用于揭示隐藏的决策策略。在这种方法中,我们首先在一组被指示使用特定策略的参与者的选择和过程数据上训练机器学习模型,然后使用训练好的模型来识别新一组参与者使用的策略。与大多数需要多次试验才能识别参与者策略的建模方法不同,MLSI 可以在每次试验的基础上区分策略。我们在三个实验中检验了 MLSI 的性能。在实验 1 中,我们在配对比较决策任务中教参与者三种不同的策略。最佳机器学习模型识别参与者使用的策略的准确率超过 90%。在实验 2 中,我们将 MLSI 与也能够在策略识别中整合多种类型数据的多指标最大似然(MM-ML)方法进行了比较,发现 MLSI 的识别准确率高于 MM-ML。在实验 3 中,我们在一个有利于非补偿策略即采择最优的任务环境中为自由做出决策的参与者提供反馈。MLSI 的逐次试验结果表明,在实验过程中,大多数参与者在开始时探索了一系列策略,但最终学会了使用采择最优。总的来说,我们的研究结果表明,MLSI 可以在逐次试验的基础上以高度准确的方式识别隐藏的策略,其性能可与需要多次试验才能识别策略的其他方法相媲美。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验