Suppr超能文献

基于贝叶斯结果的策略分类

Bayesian outcome-based strategy classification.

作者信息

Lee Michael D

机构信息

Department of Cognitive Sciences, University of California, Irvine, CA, 92697-5100, USA.

出版信息

Behav Res Methods. 2016 Mar;48(1):29-41. doi: 10.3758/s13428-014-0557-9.

Abstract

Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014) recently developed a method for making inferences about the decision processes people use in multi-attribute forced choice tasks. Their paper makes a number of worthwhile theoretical and methodological contributions. Theoretically, they provide an insightful psychological motivation for a probabilistic extension of the widely-used "weighted additive" (WADD) model, and show how this model, as well as other important models like "take-the-best" (TTB), can and should be expressed in terms of meaningful priors. Methodologically, they develop an inference approach based on the Minimum Description Length (MDL) principles that balances both the goodness-of-fit and complexity of the decision models they consider. This paper aims to preserve these useful contributions, but provide a complementary Bayesian approach with some theoretical and methodological advantages. We develop a simple graphical model, implemented in JAGS, that allows for fully Bayesian inferences about which models people use to make decisions. To demonstrate the Bayesian approach, we apply it to the models and data considered by Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014), showing how a prior predictive analysis of the models, and posterior inferences about which models people use and the parameter settings at which they use them, can contribute to our understanding of human decision making.

摘要

希尔比希和莫沙根(《心理onomic通报与评论》,2014年第21卷,第1431 - 1443页)最近开发了一种方法,用于推断人们在多属性强制选择任务中所使用的决策过程。他们的论文在理论和方法上做出了许多有价值的贡献。从理论上讲,他们为广泛使用的“加权加法”(WADD)模型的概率扩展提供了深刻的心理学动机,并展示了该模型以及其他重要模型(如“取最好的”(TTB)模型)如何以及应该用有意义的先验来表示。在方法上,他们基于最小描述长度(MDL)原则开发了一种推理方法,该方法平衡了他们所考虑的决策模型的拟合优度和复杂性。本文旨在保留这些有用的贡献,但提供一种具有一些理论和方法优势的补充性贝叶斯方法。我们开发了一个在JAGS中实现的简单图形模型,该模型允许对人们用于决策的模型进行完全贝叶斯推断。为了演示贝叶斯方法,我们将其应用于希尔比希和莫沙根(《心理onomic通报与评论》,2014年第21卷,第1431 - 1443页)所考虑的模型和数据,展示了对模型的先验预测分析以及关于人们使用哪些模型以及在何种参数设置下使用这些模型的后验推断如何有助于我们对人类决策的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验