Suppr超能文献

3' 磷酸肌醇在巨胞饮作用中的作用。

Roles for 3' Phosphoinositides in Macropinocytosis.

机构信息

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.

Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan.

出版信息

Subcell Biochem. 2022;98:119-141. doi: 10.1007/978-3-030-94004-1_7.

Abstract

The distinct movements of macropinosome formation and maturation have corresponding biochemical activities which occur in a defined sequence of stages and transitions between those stages. Each stage in the process is regulated by variously phosphorylated derivatives of phosphatidylinositol (PtdIns) which reside in the cytoplasmic face of the membrane lipid bilayer. PtdIns derivatives phosphorylated at the 3' position of the inositol moiety, called 3' phosphoinositides (3'PIs), regulate different stages of the sequence. 3'PIs are synthesized by numerous phosphoinositide 3'-kinases (PI3K) and other lipid kinases and phosphatases, which are themselves regulated by small GTPases of the Ras superfamily. The combined actions of these enzymes localize four principal species of 3'PI to distinct domains of the plasma membrane or to discrete organelles, with distinct biochemical activities confined to those domains. Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P) and phosphatidylinositol (3,4)-bisphosphate (PtdIns(3,4)P) regulate the early stages of macropinosome formation, which include cell surface ruffling and constrictions of circular ruffles which close into macropinosomes. Phosphatidylinositol 3-phosphate (PtdIns3P) regulates macropinosome fusion with other macropinosomes and early endocytic organelles. Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P) mediates macropinosome maturation and shrinkage, through loss of ions and water, and subsequent traffic to lysosomes. The different characteristic rates of macropinocytosis in different cell types indicate levels of regulation which may be governed by the cell's capacity to generate 3'PIs.

摘要

大胞饮泡的形成和成熟有独特的运动,这些运动具有相应的生化活性,它们按照特定的阶段顺序和阶段之间的转变发生。该过程的每个阶段都受到膜脂双层细胞质面中各种不同磷酸化形式的磷脂酰肌醇(PtdIns)的调节。在肌醇部分的 3'位置被磷酸化的 PtdIns 衍生物,称为 3'磷酸肌醇(3'PIs),调节该序列的不同阶段。3'PIs 由许多磷酸肌醇 3-激酶(PI3K)和其他脂质激酶和磷酸酶合成,这些酶本身又受到 Ras 超家族的小 GTPase 的调节。这些酶的共同作用将四种主要的 3'PI 定位到质膜的不同区域或离散的细胞器,将具有不同生化活性的物质局限在这些区域。磷脂酰肌醇(3,4,5)-三磷酸(PtdIns(3,4,5)P)和磷脂酰肌醇(3,4)-二磷酸(PtdIns(3,4)P)调节大胞饮泡形成的早期阶段,包括细胞表面起皱和环状皱襞的收缩,这些环状皱襞收缩形成大胞饮泡。磷脂酰肌醇 3-磷酸(PtdIns3P)调节大胞饮泡与其他大胞饮泡和早期内吞细胞器的融合。磷脂酰肌醇(3,5)-二磷酸(PtdIns(3,5)P)通过离子和水的丧失以及随后向溶酶体的运输,介导大胞饮泡的成熟和收缩。不同细胞类型中大胞饮作用的不同特征速率表明,这种调节可能受到细胞生成 3'PIs 的能力的控制。

相似文献

1
Roles for 3' Phosphoinositides in Macropinocytosis.
Subcell Biochem. 2022;98:119-141. doi: 10.1007/978-3-030-94004-1_7.
4
[Phosphoinositides: lipidic essential actors in the intracellular traffic].
Biol Aujourdhui. 2015;209(1):97-109. doi: 10.1051/jbio/2015006. Epub 2015 Jun 26.
5
In vivo analysis of 3-phosphoinositide dynamics during Dictyostelium phagocytosis and chemotaxis.
J Cell Sci. 2004 Dec 15;117(Pt 26):6497-509. doi: 10.1242/jcs.01579. Epub 2004 Nov 30.
6
Sequential signaling in plasma-membrane domains during macropinosome formation in macrophages.
J Cell Sci. 2009 Sep 15;122(Pt 18):3250-61. doi: 10.1242/jcs.053207. Epub 2009 Aug 18.
7
The role of the phosphoinositides at the Golgi complex.
Biochim Biophys Acta. 2005 Jul 10;1744(3):396-405. doi: 10.1016/j.bbamcr.2005.04.013.
8
Phosphatidylinositol Kinases and Phosphatases in .
Front Cell Infect Microbiol. 2019 Jun 6;9:150. doi: 10.3389/fcimb.2019.00150. eCollection 2019.

引用本文的文献

1
Multiple interactions recruit BLTP2 to ER-PM contacts to control plasma membrane dynamics.
J Cell Biol. 2025 Sep 3;224(11). doi: 10.1083/jcb.202504027.
3
Leep2A and Leep2B function as a RasGAP complex to regulate macropinosome formation.
J Cell Biol. 2024 Sep 2;223(9). doi: 10.1083/jcb.202401110. Epub 2024 Jun 18.
4
Macropinocytosis in (Rhodophyta).
Front Plant Sci. 2023 Sep 26;14:1225675. doi: 10.3389/fpls.2023.1225675. eCollection 2023.
5
CYRI proteins: controllers of actin dynamics in the cellular 'eat vs walk' decision.
Biochem Soc Trans. 2023 Apr 26;51(2):579-585. doi: 10.1042/BST20221354.
6
Functional significance of ion channels during macropinosome resolution in immune cells.
Front Physiol. 2022 Oct 20;13:1037758. doi: 10.3389/fphys.2022.1037758. eCollection 2022.
7
The orchestrated signaling by PI3Kα and PTEN at the membrane interface.
Comput Struct Biotechnol J. 2022 Oct 7;20:5607-5621. doi: 10.1016/j.csbj.2022.10.007. eCollection 2022.

本文引用的文献

3
Quantification of Genetically Encoded Lipid Biosensors.
Methods Mol Biol. 2021;2251:55-72. doi: 10.1007/978-1-0716-1142-5_4.
4
LRRK2 and Rab10 coordinate macropinocytosis to mediate immunological responses in phagocytes.
EMBO J. 2020 Oct 15;39(20):e104862. doi: 10.15252/embj.2020104862. Epub 2020 Aug 27.
5
Coordinated Ras and Rac Activity Shapes Macropinocytic Cups and Enables Phagocytosis of Geometrically Diverse Bacteria.
Curr Biol. 2020 Aug 3;30(15):2912-2926.e5. doi: 10.1016/j.cub.2020.05.049. Epub 2020 Jun 11.
6
A conserved and regulated mechanism drives endosomal Rab transition.
Elife. 2020 May 11;9:e56090. doi: 10.7554/eLife.56090.
7
Statin-induced GGPP depletion blocks macropinocytosis and starves cells with oncogenic defects.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4158-4168. doi: 10.1073/pnas.1917938117. Epub 2020 Feb 12.
8
Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis.
Nature. 2019 Dec;576(7787):477-481. doi: 10.1038/s41586-019-1831-x. Epub 2019 Dec 11.
9
Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance.
Science. 2020 Jan 17;367(6475):301-305. doi: 10.1126/science.aaw9544. Epub 2019 Dec 5.
10
Small molecule PIKfyve inhibitors as cancer therapeutics: Translational promises and limitations.
Toxicol Appl Pharmacol. 2019 Nov 15;383:114771. doi: 10.1016/j.taap.2019.114771. Epub 2019 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验