Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
Autophagy. 2023 Apr;19(4):1365-1367. doi: 10.1080/15548627.2022.2124499. Epub 2022 Sep 26.
Macroautophagy/autophagy occurs basally under nutrient-rich conditions in most mammalian cells, contributing to protein and organelle quality control, and protection against aging and neurodegeneration. During autophagy, lysosomes are heavily utilized via their fusion with autophagosomes and must be repopulated to maintain autophagic degradative capacity. During starvation-induced autophagy, lysosomes are generated via biogenesis under the control of TFEB (transcription factor EB), or by the recycling of autolysosome membranes via autophagic lysosome reformation (ALR). However, these lysosome repopulation processes do not operate under nutrient-rich conditions. In our recent study, we identify a sequential phosphoinositide conversion pathway that enables lysosome repopulation under nutrient-rich conditions to facilitate basal autophagy. Phosphatidylinositol-3,4-bisphosphate (PtdIns[3,4]P) signals generated downstream of phosphoinositide 3-kinase alpha (PI3Kα) during growth factor stimulation are converted to phosphatidylinositol-3-phosphate (PtdIns3P) on endosomes by INPP4B (inositol polyphosphate-4-phosphatase type II B). We show that PtdIns3P is retained as endosomes mature into endolysosomes, and serves as a substrate for PIKFYVE (phosphoinositide kinase, FYVE-type zinc finger containing) to generate phosphatidylinositol-3,5-bisphosphate (PtdIns[3,5]P) to promote SNX2-dependent lysosome reformation, basal autophagic flux and protein aggregate degradation. Therefore, endosome maturation couples nutrient signaling to lysosome repopulation during basal autophagy by delivering PI3Kα-derived PtdIns3P to endolysosomes for PtdIns(3,5)P-dependent lysosome reformation. ALR: autophagic lysosome reformation; INPP4B: inositol polyphosphate-4-phosphatase type II B; PI3Kα: phosphoinositide 3-kinase alpha; PIKFYVE: phosphoinositide kinase FYVE-type zinc finger containing; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,4)P: phosphatidylinositol-3,4-bisphosphate; PtdIns(3,5)P phosphatidylinositol-3,5-bisphosphate; SNX2 sorting nexin 2; PIK3C3/VPS34 phosphatidylinositol 3-kinase catalytic subunit type 3.
在大多数哺乳动物细胞中,在营养丰富的条件下,细胞会发生自噬,这有助于蛋白质和细胞器的质量控制,并防止衰老和神经退行性变。在自噬过程中,溶酶体通过与自噬体融合而被大量利用,因此必须重新填充溶酶体以维持自噬降解能力。在饥饿诱导的自噬中,溶酶体通过 TFEB(转录因子 EB)的生物发生或通过自噬溶酶体再形成(ALR)回收自溶酶体膜而产生。然而,这些溶酶体再填充过程在营养丰富的条件下不起作用。在我们最近的研究中,我们确定了一种连续的磷酸肌醇转化途径,该途径可在营养丰富的条件下实现溶酶体再填充,从而促进基础自噬。在生长因子刺激期间,磷酸肌醇 3-激酶α(PI3Kα)下游产生的磷脂酰肌醇-3,4-二磷酸(PtdIns[3,4]P)信号被 INPP4B(肌醇多磷酸-4-磷酸酶 II B)转化为内体上的磷脂酰肌醇-3-磷酸(PtdIns3P)。我们表明,PtdIns3P 在内体成熟为内溶酶体时被保留,并作为 PIKFYVE(磷酸肌醇激酶,含 FYVE 型锌指)的底物,以生成磷脂酰肌醇-3,5-二磷酸(PtdIns[3,5]P),从而促进 SNX2 依赖性溶酶体再形成、基础自噬通量和蛋白质聚集体降解。因此,通过将 PI3Kα 衍生的 PtdIns3P 递送至内溶酶体,用于 PtdIns(3,5)P 依赖性溶酶体再形成,内体成熟将营养信号与基础自噬期间的溶酶体再填充偶联起来。ALR:自噬溶酶体再形成;INPP4B:肌醇多磷酸-4-磷酸酶 II B;PI3Kα:磷酸肌醇 3-激酶 α;PIKFYVE:磷酸肌醇激酶 FYVE 型锌指包含;PtdIns3P:磷脂酰肌醇-3-磷酸;PtdIns(3,4)P:磷脂酰肌醇-3,4-二磷酸;PtdIns(3,5)P:磷脂酰肌醇-3,5-二磷酸;SNX2 分选连接蛋白 2;PIK3C3/VPS34 磷脂酰肌醇 3-激酶催化亚单位 3。