Suppr超能文献

基于网络药理学探索汉石阻肺方治疗新型冠状病毒肺炎的作用机制

Exploration of Hanshi Zufei prescription for treatment of COVID-19 based on network pharmacology.

作者信息

Li Xinrui, Wen Zishuai, Si Mingdong, Jia Yuxin, Liu Huixian, Zheng Yuguang, Ma Donglai

机构信息

School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.

Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang 050091, China.

出版信息

Chin Herb Med. 2022 Apr;14(2):294-302. doi: 10.1016/j.chmed.2021.06.006. Epub 2022 Mar 31.

Abstract

OBJECTIVE

Network pharmacology combines drug and disease targets with biological information networks based on the integrity and systematicness of the interactions between drugs and disease targets. This study aims to explore the molecular basis of Hanshi Zufei formula for treatment of COVID-19 based on network pharmacology and molecular docking techniques.

METHODS

Using TCMSP, the chemical constituents and molecular targets of , , , , , , et , , and were investigated. The predicted targets of novel coronavirus were screened using the NCBI and GeneCards databases. To further screen the drug-disease core targets network, the corresponding target proteins were queried using multiple databases (Biogrid, DIP, and HPRD), a protein interaction network graph was constructed, and the network topology was analyzed. The molecular docking studies were also performed between the network's top 15 compounds and the coronavirus (SARS-CoV-2) 3CL hydrolytic enzyme and angiotensin conversion enzyme II (ACE2).

RESULTS

The herb-active ingredient-target network contained nine drugs, 86 compounds, and 49 drug-disease targets. Gene ontology (GO) enrichment analysis resulted in 1566 GO items ( < 0.05), among which 1438 were biological process items, 35 were cell composition items, and 93 were molecular function items. Fourteen signal pathways were obtained by enrichment screening of the KEGG pathway database ( < 0.05). The molecular docking results showed that the affinity of the core active compounds with the SARS-CoV-2 3CL hydrolase was better than for the other compounds.

CONCLUSION

Several core compounds can regulate multiple signaling pathways by binding with 3CL hydrolase and ACE2, which might contribute to the treatment of COVID-19.

摘要

目的

网络药理学基于药物与疾病靶点相互作用的整体性和系统性,将药物和疾病靶点与生物信息网络相结合。本研究旨在基于网络药理学和分子对接技术,探索寒湿阻肺方治疗新型冠状病毒肺炎(COVID-19)的分子基础。

方法

运用中药系统药理学数据库与分析平台(TCMSP),研究了 、 、 、 、 、 、 等以及 、 和 的化学成分和分子靶点。利用美国国立医学图书馆(NCBI)和基因卡片(GeneCards)数据库筛选新型冠状病毒的预测靶点。为进一步筛选药物-疾病核心靶点网络,使用多个数据库(生物通用数据库(Biogrid)、相互作用蛋白质数据库(DIP)和人类蛋白质参考数据库(HPRD))查询相应的靶蛋白,构建蛋白质相互作用网络图,并分析网络拓扑结构。还对网络排名前 15 的化合物与冠状病毒(SARS-CoV-2)3C 样蛋白酶(3CL 水解酶)和血管紧张素转换酶 II(ACE2)进行了分子对接研究。

结果

中药-活性成分-靶点网络包含 9 味中药、86 种化合物和 49 个药物-疾病靶点。基因本体(GO)富集分析得到 1566 个 GO 条目( < 0.05),其中 1438 个为生物学过程条目,35 个为细胞组成条目,93 个为分子功能条目。通过京都基因与基因组百科全书(KEGG)通路数据库富集筛选得到 14 条信号通路( < 0.05)。分子对接结果表明,核心活性化合物与 SARS-CoV-2 3CL 水解酶的亲和力优于其他化合物。

结论

几种核心化合物可通过与 3CL 水解酶和 ACE2 结合来调节多条信号通路,这可能有助于 COVID-19 的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4466/9476725/f93cfd64e8ad/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验