Rahmat Meysam, Jakubinek Michael B, Ashrafi Behnam, Martinez-Rubi Yadienka, Simard Benoit
Aerospace Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada.
Security and Disruptive Technologies Research Centre, Emerging Technologies Division, National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
ACS Omega. 2022 Mar 15;7(12):10674-10686. doi: 10.1021/acsomega.2c00365. eCollection 2022 Mar 29.
Hybrid composite materials are a class of materials where more than one type of reinforcement is integrated into a matrix to achieve superior properties. This typically involves nanoparticle fillers employed within traditional advanced composites with fiber reinforcements such as carbon or glass. The current study builds on previous investigations of boron nitride nanotube (BNNT) hybrid composites, specifically glass fiber (GF)-epoxy/BNNT composite laminates. GF is an effective and affordable primary reinforcement fiber in many applications, and boron nitride nanotubes (BNNTs) exhibit impressive mechanical properties comparable to carbon nanotubes (CNTs) with distinct functional properties, such as electrical insulation, which is desirable in manufacturing insulating composites when combined with GF. GF-epoxy/BNNT composite laminates, incorporating BNNT materials with different loadings (1 and 2 wt %) and purity, were manufactured using a hand layup technique and prepared for three-point bending, modified Charpy, dynamic mechanical analysis (DMA), and fracture toughness (mode I and mode II) measurements. A comprehensive microscopy study was also performed using scanning electron microscopy (SEM) showing prominent failure mechanism, nanotube dispersion, and their mode of reinforcement in different loading scenarios. Enhanced properties, including a 43% increase in mode II fracture toughness, were observed in hybrid composites with 1 wt % BNNT compared to the GF composites with neat epoxy, and the reinforcement mechanisms were discussed.
混合复合材料是一类将不止一种增强材料集成到基体中以获得优异性能的材料。这通常涉及在具有纤维增强材料(如碳或玻璃)的传统先进复合材料中使用纳米颗粒填料。当前的研究建立在先前对氮化硼纳米管(BNNT)混合复合材料的研究基础上,特别是玻璃纤维(GF)-环氧树脂/BNNT复合层压板。在许多应用中,GF是一种有效且经济的主要增强纤维,氮化硼纳米管(BNNTs)具有令人印象深刻的机械性能,可与碳纳米管(CNTs)相媲美,并且具有独特的功能特性,如电绝缘性,当与GF结合用于制造绝缘复合材料时,这是非常理想的。采用手糊工艺制造了包含不同含量(1 wt%和2 wt%)和纯度的BNNT材料的GF-环氧树脂/BNNT复合层压板,并准备进行三点弯曲、改进的夏比冲击试验、动态力学分析(DMA)以及断裂韧性(I型和II型)测量。还使用扫描电子显微镜(SEM)进行了全面的显微镜研究,展示了在不同加载情况下突出的失效机制、纳米管分散情况及其增强方式。与纯环氧树脂的GF复合材料相比,在含有1 wt% BNNT的混合复合材料中观察到性能增强,包括II型断裂韧性提高了43%,并对增强机制进行了讨论。