Suppr超能文献

系统评价和荟萃分析:人工智能在胃前病变和幽门螺杆菌感染诊断中的应用。

Systematic review and meta-analysis: Artificial intelligence for the diagnosis of gastric precancerous lesions and Helicobacter pylori infection.

机构信息

Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, Roma 1035 - 00189, Italy.

Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, Roma 1035 - 00189, Italy.

出版信息

Dig Liver Dis. 2022 Dec;54(12):1630-1638. doi: 10.1016/j.dld.2022.03.007. Epub 2022 Apr 2.

Abstract

BACKGROUND

The endoscopic diagnosis of Helicobacter-pylori(H.pylori) infection and gastric precancerous lesions(GPL), namely atrophic-gastritis and intestinal-metaplasia, still remains challenging. Artificial intelligence(AI) may represent a powerful resource for the endoscopic recognition of these conditions.

AIMS

To explore the diagnostic performance(DP) of AI in the diagnosis of GPL and H.pylori infection.

METHODS

A systematic-review was performed by two independent authors up to September 2021. Inclusion criteria were studies focusing on the DP of AI-system in the diagnosis of GPL and H.pylori infection. The pooled accuracy of studies included was reported.

RESULTS

Overall, 128 studies were found (PubMed-Embase-Cochrane Library) and four and nine studies were finally included regarding GPL and H.pylori infection, respectively. The pooled-accuracy(random effects model) was 90.3%(95%CI 84.3-94.9) and 79.6%(95%CI 66.7-90.0) with a significant heterogeneity[I=90.4%(95%CI 78.5-95.7);I=97.9%(97.2-98.6)] for GPL and H.pylori infection, respectively. The Begg's-test showed a significant publication-bias(p = 0.0371) only among studies regarding H.pylori infection. The pooled-accuracy(random-effects-model) was similar considering only studies using CNN-model for the diagnosis of H.pylori infection: 74.1%[(95%CI 51.6-91.3);I=98.9%(95%CI 98.5-99.3)], Begg's-test(p = 0.1416) did not show publication-bias.

CONCLUSION

AI-system seems to be a good resource for an easier diagnosis of GPL and H.pylori infection, showing a pooled-diagnostic-accuracy of 90% and 80%, respectively. However, considering the high heterogeneity, these promising data need an external validation by randomized control trials and prospective real-time studies.

摘要

背景

幽门螺杆菌(H.pylori)感染和胃癌前病变(GPL),即萎缩性胃炎和肠化生的内镜诊断仍然具有挑战性。人工智能(AI)可能是内镜识别这些情况的有力资源。

目的

探讨 AI 在 GPL 和 H.pylori 感染诊断中的诊断性能(DP)。

方法

两位独立作者进行了系统评价,截至 2021 年 9 月。纳入标准为关注 AI 系统在 GPL 和 H.pylori 感染诊断中 DP 的研究。报告了纳入研究的汇总准确性。

结果

总共在 PubMed-Embase-Cochrane Library 中找到了 128 项研究,最终分别纳入了 4 项和 9 项关于 GPL 和 H.pylori 感染的研究。汇总的准确性(随机效应模型)分别为 90.3%(95%CI 84.3-94.9)和 79.6%(95%CI 66.7-90.0),存在显著的异质性[I=90.4%(95%CI 78.5-95.7);I=97.9%(97.2-98.6)],分别用于 GPL 和 H.pylori 感染。Begg 检验显示,仅在关于 H.pylori 感染的研究中存在显著的发表偏倚(p=0.0371)。仅考虑使用 CNN 模型诊断 H.pylori 感染的研究时,汇总的准确性(随机效应模型)相似:74.1%[(95%CI 51.6-91.3);I=98.9%(95%CI 98.5-99.3)],Begg 检验(p=0.1416)未显示发表偏倚。

结论

AI 系统似乎是一种很好的资源,可以更轻松地诊断 GPL 和 H.pylori 感染,分别显示出 90%和 80%的汇总诊断准确性。然而,考虑到高度的异质性,这些有前途的数据需要通过随机对照试验和前瞻性实时研究进行外部验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验