Suppr超能文献

人工智能为胃肠病学和肝病学带来变革:通过跨学科实践实现精准诊断和公平医疗。

Revolutionizing gastroenterology and hepatology with artificial intelligence: From precision diagnosis to equitable healthcare through interdisciplinary practice.

作者信息

Chen Zhi-Li, Wang Chao, Wang Fang

机构信息

Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130021, Jilin Province, China.

出版信息

World J Gastroenterol. 2025 Jun 28;31(24):108021. doi: 10.3748/wjg.v31.i24.108021.

Abstract

Artificial intelligence (AI) is driving a paradigm shift in gastroenterology and hepatology by delivering cutting-edge tools for disease screening, diagnosis, treatment, and prognostic management. Through deep learning, radiomics, and multimodal data integration, AI has achieved diagnostic parity with expert clinicians in endoscopic image analysis (, early gastric cancer detection, colorectal polyp identification) and non-invasive assessment of liver pathologies (, fibrosis staging, fatty liver typing) while demonstrating utility in personalized care scenarios such as predicting hepatocellular carcinoma recurrence and optimizing inflammatory bowel disease treatment responses. Despite these advancements challenges persist including limited model generalization due to fragmented datasets, algorithmic limitations in rare conditions (, pediatric liver diseases) caused by insufficient training data, and unresolved ethical issues related to bias, accountability, and patient privacy. Mitigation strategies involve constructing standardized multicenter databases, validating AI tools through prospective trials, leveraging federated learning to address data scarcity, and developing interpretable systems (, attention heatmap visualization) to enhance clinical trust. Integrating generative AI, digital twin technologies, and establishing unified ethical/regulatory frameworks will accelerate AI adoption in primary care and foster equitable healthcare access while interdisciplinary collaboration and evidence-based implementation remain critical for realizing AI's potential to redefine precision care for digestive disorders, improve global health outcomes, and reshape healthcare equity.

摘要

人工智能(AI)正在推动胃肠病学和肝病学的范式转变,它提供了用于疾病筛查、诊断、治疗和预后管理的前沿工具。通过深度学习、放射组学和多模态数据整合,人工智能在内镜图像分析(如早期胃癌检测、结肠息肉识别)和肝脏疾病的非侵入性评估(如纤维化分期、脂肪肝分型)方面已达到与专家临床医生相当的诊断水平,同时在个性化医疗场景中也显示出实用性,如预测肝细胞癌复发和优化炎症性肠病的治疗反应。尽管取得了这些进展,但挑战依然存在,包括由于数据集分散导致模型泛化能力有限、因训练数据不足在罕见病(如儿科肝脏疾病)中存在算法局限性,以及与偏差、问责制和患者隐私相关的未解决的伦理问题。缓解策略包括构建标准化的多中心数据库、通过前瞻性试验验证人工智能工具、利用联邦学习解决数据稀缺问题,以及开发可解释系统(如注意力热图可视化)以增强临床信任。整合生成式人工智能、数字孪生技术并建立统一的伦理/监管框架将加速人工智能在初级保健中的应用,并促进公平的医疗保健获取,而跨学科合作和基于证据的实施对于实现人工智能重新定义消化系统疾病精准医疗、改善全球健康结果和重塑医疗公平性的潜力仍然至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a94/12207556/9d0216250318/wjg-31-24-108021-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验