Division of Cardiovascular Medicine Brigham and Women's Hospital Harvard Medical School Boston MA.
Department of Cardiology Herlev-Gentofte Hospital Herlev Denmark.
J Am Heart Assoc. 2022 Apr 19;11(8):e021327. doi: 10.1161/JAHA.121.021327. Epub 2022 Apr 6.
Background Baseline and temporal changes in natriuretic peptide (NP) concentrations have strong prognostic value with regard to long-term cardiovascular risk stratification. To increase the clinical utility of NP sampling for patient management, we wanted to assess the incremental predictive value of 2 serial NP measurements compared with a single measurement and provide absolute risk estimates for cardiovascular death or heart failure hospitalization (HFH) within 6 months based on 2 serial NP measurements. Methods and Results Consecutive NP samples obtained from 5393 patients with a recent coronary event and type 2 diabetes enrolled in the ELIXA (Evaluation of Cardiovascular Outcomes in Patients With Type 2 Diabetes After Acute Coronary Syndrome During Treatment With Lixisenatide) trial were used to construct best logistic regression models with outcome of cardiovascular death or HFH (136 events). Absolute risk estimates of cardiovascular death or HFH within 6 months using either BNP (B-type natriuretic peptide) or NT-proBNP (N-terminal pro-BNP) serial measurements were depicted based on the concentrations of 2 serial NP measurements. During the 6-month follow-up periods, the incidence rate (±95% CIs) of cardiovascular death or HFH for patients was 14.0 (11.8‒16.6) per 1000 patient-years. Risk prediction depended on NP concentrations from both prior and current sampling. NP sampling 6 months apart improved the predictive value and reclassification of patients compared with a single sample (AUROC [Area Under the Receiver Operating Characteristic curve]: BNP, =0.003. NT-proBNP, <0.0001), with a majority of moderate-risk patients (6-month risk between 1% and 10%) being reclassified on the basis of the second NP sample. Conclusions Serial NP measurements improved prediction of imminent cardiovascular death or HFH in patients with coronary artery disease and type 2 diabetes. The absolute risk estimates provided may aid clinicians in decision-making and help patients understand their short-term risk profile.
利钠肽(NP)浓度的基线和时间变化对长期心血管风险分层具有很强的预后价值。为了提高 NP 采样在患者管理中的临床实用性,我们希望评估与单次测量相比,2 次 NP 测量的增量预测价值,并根据 2 次 NP 测量提供 6 个月内心血管死亡或心力衰竭住院(HFH)的绝对风险估计。
使用来自最近发生冠心病事件和 2 型糖尿病的 5393 例患者的连续 NP 样本,这些患者参加了 ELIXA(利西那肽治疗急性冠脉综合征后 2 型糖尿病患者的心血管结局评估)试验,用于构建最佳逻辑回归模型,结局为心血管死亡或 HFH(136 例事件)。使用 BNP(B 型利钠肽)或 NT-proBNP(N 末端 pro-BNP)的连续测量值,根据 2 次 NP 测量值的浓度,描绘了 6 个月内心血管死亡或 HFH 的绝对风险估计。在 6 个月的随访期间,心血管死亡或 HFH 的发生率(±95%CI)为每 1000 患者年 14.0(11.8-16.6)。风险预测取决于前后两次 NP 采样的浓度。与单次采样相比,NP 采样间隔 6 个月可提高患者的预测价值和重新分类(AUROC[受试者工作特征曲线下面积]:BNP,=0.003;NT-proBNP,<0.0001),大多数中危患者(6 个月风险为 1%至 10%)基于第二次 NP 样本进行重新分类。
连续 NP 测量可改善冠心病和 2 型糖尿病患者发生心血管死亡或 HFH 的预测。提供的绝对风险估计可能有助于临床医生做出决策,并帮助患者了解其短期风险状况。