Liu Kun, Zhu Zhuoya, Jiang Mengqi, Li Liangcheng, Ding Linfei, Li Meng, Sun Dongmei, Yang Gaixiu, Fu Gengtao, Tang Yawen
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing, 210037, P. R. China.
Chemistry. 2022 Jun 7;28(32):e202200664. doi: 10.1002/chem.202200664. Epub 2022 Apr 26.
An dual electronic and architectural engineering strategy is a good way to rationally design earth-abundant and highly efficient electrocatalysts of the oxygen evolution reaction (OER) for sustainable hydrogen-based energy devices. Here, a Ce-doped Co S core-shell nanoneedle array (Ce-Co S @CC) supported on a carbon cloth has been designed and developed to accelerate the sluggish kinetics of the OER. Profiting from valance alternative Ce doping, a fine core-shell structure and vertically aligned nanoneedle arrayed architecture, Ce-Co S @CC integrates modulated electronic structure, highly exposed active sites, and multidimensional mass diffusion channels; together, these afford a favorable catalyzed OER. Ce-Co S @CC exhibits remarkable performance in the OER in an alkaline medium, where the overpotential requires only 242 mV to deliver a current density of 10 mA cm for the OER; this is 70 mV superior to that of Ce-free Co S catalyst and other counterparts. Good stability and impressive selectivity (nearly 100 % Faradic efficiency) are also demonstrated. When integrated into a two-electrode OER//HER electrolyzer, the as-prepared Ce-Co S @CC displays a low operation potential of 1.54 V at 10 mA cm and long-term stability, thus demonstrating great potential for economical water electrolysis.
电子与建筑工程双策略是合理设计用于可持续氢基能源装置的析氧反应(OER)的储量丰富且高效的电催化剂的一种好方法。在此,设计并开发了一种负载在碳布上的Ce掺杂CoS核壳纳米针阵列(Ce-CoS@CC),以加速OER缓慢的动力学过程。得益于价态替代Ce掺杂、良好的核壳结构和垂直排列的纳米针阵列结构,Ce-CoS@CC整合了调制电子结构、高度暴露的活性位点和多维质量扩散通道;这些共同为OER提供了良好的催化效果。Ce-CoS@CC在碱性介质中的OER中表现出卓越的性能,在该介质中,OER的过电位仅需242 mV就能提供10 mA cm的电流密度;这比不含Ce的CoS催化剂及其他同类催化剂高出70 mV。还展示了良好的稳定性和令人印象深刻的选择性(法拉第效率接近100%)。当集成到两电极OER//HER电解槽中时,所制备的Ce-CoS@CC在10 mA cm时显示出1.54 V的低运行电位和长期稳定性,从而展现出经济水电解的巨大潜力。