Suppr超能文献

机器学习预测脊髓刺激后阿片类药物剂量减少或稳定的成功率。

Machine Learning to Predict Successful Opioid Dose Reduction or Stabilization After Spinal Cord Stimulation.

机构信息

Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA.

Higgs Boson Health, Durham, North Carolina, USA.

出版信息

Neurosurgery. 2022 Aug 1;91(2):272-279. doi: 10.1227/neu.0000000000001969. Epub 2022 Apr 8.

Abstract

BACKGROUND

Spinal cord stimulation (SCS) effectively reduces opioid usage in some patients, but preoperatively, there is no objective measure to predict who will most benefit.

OBJECTIVE

To predict successful reduction or stabilization of opioid usage after SCS using machine learning models we developed and to assess if deep learning provides a significant benefit over logistic regression (LR).

METHODS

We used the IBM MarketScan national databases to identify patients undergoing SCS from 2010 to 2015. Our models predict surgical success as defined by opioid dose stability or reduction 1 year after SCS. We incorporated 30 predictors, primarily regarding medication patterns and comorbidities. Two machine learning algorithms were applied: LR with recursive feature elimination and deep neural networks (DNNs). To compare model performances, we used nested 5-fold cross-validation to calculate area under the receiver operating characteristic curve (AUROC).

RESULTS

The final cohort included 7022 patients, of whom 66.9% had successful surgery. Our 5-variable LR performed comparably with the full 30-variable version (AUROC difference <0.01). The DNN and 5-variable LR models demonstrated similar AUROCs of 0.740 (95% CI, 0.727-0.753) and 0.737 (95% CI, 0.728-0.746) ( P = .25), respectively. The simplified model can be accessed at SurgicalML.com .

CONCLUSION

We present the first machine learning-based models for predicting reduction or stabilization of opioid usage after SCS. The DNN and 5-variable LR models demonstrated comparable performances, with the latter revealing significant associations with patients' pre-SCS pharmacologic patterns. This simplified, interpretable LR model may augment patient and surgeon decision making regarding SCS.

摘要

背景

脊髓刺激(SCS)可有效减少部分患者的阿片类药物用量,但术前尚无客观指标来预测谁将从中获益最大。

目的

利用我们开发的机器学习模型预测 SCS 后阿片类药物使用量减少或稳定,并评估深度学习是否比逻辑回归(LR)有显著优势。

方法

我们使用 IBM MarketScan 全国数据库,确定 2010 年至 2015 年期间接受 SCS 的患者。我们的模型根据 SCS 后 1 年的阿片类药物剂量稳定性或减少来预测手术成功。我们纳入了 30 个预测因素,主要是药物使用模式和合并症。应用了两种机器学习算法:具有递归特征消除的 LR 和深度神经网络(DNN)。为了比较模型性能,我们使用嵌套 5 折交叉验证计算接收者操作特征曲线下面积(AUROC)。

结果

最终队列纳入了 7022 例患者,其中 66.9%的患者手术成功。我们的 5 变量 LR 与完整的 30 变量版本表现相当(AUROC 差异<0.01)。DNN 和 5 变量 LR 模型的 AUROC 分别为 0.740(95%CI,0.727-0.753)和 0.737(95%CI,0.728-0.746)(P=0.25)。简化模型可在 SurgicalML.com 上获取。

结论

我们提出了首个基于机器学习的预测 SCS 后阿片类药物使用量减少或稳定的模型。DNN 和 5 变量 LR 模型表现相当,后者揭示了与患者术前药物使用模式的显著关联。这种简化的、可解释的 LR 模型可能会增强患者和外科医生对 SCS 的决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验