Suppr超能文献

在分形和欧几里得电极上对视网膜细胞进行可控组装。

Controlled assembly of retinal cells on fractal and Euclidean electrodes.

机构信息

Physics Department, University of Oregon, Eugene, Oregon, United States of America.

Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America.

出版信息

PLoS One. 2022 Apr 6;17(4):e0265685. doi: 10.1371/journal.pone.0265685. eCollection 2022.

Abstract

Controlled assembly of retinal cells on artificial surfaces is important for fundamental cell research and medical applications. We investigate fractal electrodes with branches of vertically-aligned carbon nanotubes and silicon dioxide gaps between the branches that form repeating patterns spanning from micro- to milli-meters, along with single-scaled Euclidean electrodes. Fluorescence and electron microscopy show neurons adhere in large numbers to branches while glial cells cover the gaps. This ensures neurons will be close to the electrodes' stimulating electric fields in applications. Furthermore, glia won't hinder neuron-branch interactions but will be sufficiently close for neurons to benefit from the glia's life-supporting functions. This cell 'herding' is adjusted using the fractal electrode's dimension and number of repeating levels. We explain how this tuning facilitates substantial glial coverage in the gaps which fuels neural networks with small-world structural characteristics. The large branch-gap interface then allows these networks to connect to the neuron-rich branches.

摘要

在人工表面上对视网膜细胞进行受控组装对于基础细胞研究和医学应用很重要。我们研究了具有垂直排列的碳纳米管分支的分形电极,以及分支之间的二氧化硅间隙,这些间隙形成了从微观到毫米的重复图案,还有单尺度的欧几里得电极。荧光和电子显微镜显示神经元大量附着在分支上,而神经胶质细胞覆盖间隙。这确保了在应用中神经元将接近电极的刺激电场。此外,神经胶质不会阻碍神经元-分支的相互作用,但会足够接近,使神经元受益于神经胶质的维持生命的功能。这种细胞“放牧”可以使用分形电极的尺寸和重复水平来调整。我们解释了这种调谐如何促进间隙中大量神经胶质的覆盖,从而为具有小世界结构特征的神经网络提供燃料。然后,大的分支-间隙界面允许这些网络连接到富含神经元的分支。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/8985931/e6bf3f530af4/pone.0265685.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验