Dillon Aiden P, Moslehi Saba, Brouse Bret, Keremane Saumya, Philliber Sam, Griffiths Willem, Rowland Conor, Smith Julian H, Taylor Richard P
Department of Physics, University of Oregon, Eugene, OR 97403, USA.
Materials Science Institute, University of Oregon, Eugene, OR 97403, USA.
Bioengineering (Basel). 2024 Aug 12;11(8):823. doi: 10.3390/bioengineering11080823.
Exploring how neurons in the mammalian body interact with the artificial interface of implants can be used to learn about fundamental cell behavior and to refine medical applications. For fundamental and applied research, it is crucial to determine the conditions that encourage neurons to maintain their natural behavior during interactions with non-natural interfaces. Our previous investigations quantified the deterioration of neuronal connectivity when their dendrites deviate from their natural fractal geometry. Fractal resonance proposes that neurons will exhibit enhanced connectivity if an implant's electrode geometry is matched to the fractal geometry of the neurons. Here, we use in vitro imaging to quantify the fractal geometry of mouse retinal neurons and show that they change during interaction with the electrode. Our results demonstrate that it is crucial to understand these changes in the fractal properties of neurons for fractal resonance to be effective in the in vivo mammalian system.
探索哺乳动物体内的神经元如何与植入物的人工界面相互作用,可用于了解基本的细胞行为并优化医学应用。对于基础研究和应用研究而言,确定在与非自然界面相互作用期间促使神经元维持其自然行为的条件至关重要。我们之前的研究量化了神经元树突偏离其自然分形几何形状时神经元连接性的恶化情况。分形共振提出,如果植入物的电极几何形状与神经元的分形几何形状相匹配,神经元将表现出增强的连接性。在此,我们使用体外成像来量化小鼠视网膜神经元的分形几何形状,并表明它们在与电极相互作用期间会发生变化。我们的结果表明,要使分形共振在体内哺乳动物系统中有效,了解神经元分形特性的这些变化至关重要。