Suppr超能文献

一种基于改进证据理论的环境空气质量评价模型。

An ambient air quality evaluation model based on improved evidence theory.

作者信息

Sun Qiao, Zhang Tong, Wang Xinyang, Lin Weiwei, Fong Simon, Chen Zhibo, Xu Fu, Wu Ling

机构信息

School of Information Science and Technology, Beijing Forestry University, Beijing, 100083, China.

Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing, 100083, China.

出版信息

Sci Rep. 2022 Apr 6;12(1):5753. doi: 10.1038/s41598-022-09344-0.

Abstract

It is significant to evaluate the air quality scientifically for the management of air pollution. As an air quality comprehensive evaluation problem, its uncertainty can be effectively addressed by the Dempster-Shafer (D-S) evidence theory. However, there is not enough research on air quality comprehensive assessment using D-S theory. Aiming at the counterintuitive fusion results of the D-S combination rule in the field of comprehensive decision, an improved evidence theory with evidence weight and evidence decision credibility (here namely DCre-Weight method) is proposed, and it is used to comprehensively evaluate air quality. First, this method determines the weights of evidence by the entropy weight method and introduces the decision credibility by calculating the dispersion of different evidence decisions. An algorithm case shows that the credibility of fusion results is improved and the uncertainty is well expressed. It can make reasonable fusion results and solve the problems of D-S. Then, the air quality evaluation model based on improved evidence theory (here namely the DCreWeight model) is proposed. Finally, according to the hourly air pollution data in Xi'an from June 1, 2014, to May 1, 2016, comparisons are made with the D-S, other improved methods of evidence theory, and a recent fuzzy synthetic evaluation method to validate the effectiveness of the model. Under the national AQCI standard, the MAE and RMSE of the DCreWeight model are 1.02 and 1.17. Under the national AQI standard, the DCreWeight model has the minimal MAE, RMSE, and maximal index of agreement, which validated the superiority of the DCreWeight model. Therefore, the DCreWeight model can comprehensively evaluate air quality. It can provide a scientific basis for relevant departments to prevent and control air pollution.

摘要

科学评估空气质量对于空气污染治理具有重要意义。作为一个空气质量综合评价问题,其不确定性可通过Dempster-Shafer(D-S)证据理论有效解决。然而,利用D-S理论进行空气质量综合评估的研究还不够充分。针对综合决策领域中D-S组合规则的反直觉融合结果,提出了一种带有证据权重和证据决策可信度的改进证据理论(这里即DCre-Weight方法),并将其用于空气质量综合评估。首先,该方法通过熵权法确定证据权重,并通过计算不同证据决策的离散度引入决策可信度。一个算法案例表明,融合结果的可信度得到提高,不确定性得到很好的表达。它能得出合理的融合结果并解决D-S的问题。然后,提出了基于改进证据理论的空气质量评价模型(这里即DCreWeight模型)。最后,根据2014年6月1日至2016年5月1日西安的小时空气污染数据,与D-S、证据理论的其他改进方法以及最近的模糊综合评价方法进行比较,以验证该模型的有效性。在国家AQCI标准下,DCreWeight模型的平均绝对误差(MAE)和均方根误差(RMSE)分别为1.02和1.17。在国家AQI标准下,DCreWeight模型的MAE、RMSE最小,一致性指数最大,验证了DCreWeight模型的优越性。因此,DCreWeight模型能够对空气质量进行综合评价。它可为相关部门防治空气污染提供科学依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecae/8986843/2d97d92ef39f/41598_2022_9344_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验