Suppr超能文献

绘制蛋白质结合域的能量和别构景观。

Mapping the energetic and allosteric landscapes of protein binding domains.

机构信息

Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.

New York Genome Center (NYGC), New York, NY, USA.

出版信息

Nature. 2022 Apr;604(7904):175-183. doi: 10.1038/s41586-022-04586-4. Epub 2022 Apr 6.

Abstract

Allosteric communication between distant sites in proteins is central to biological regulation but still poorly characterized, limiting understanding, engineering and drug development. An important reason for this is the lack of methods to comprehensively quantify allostery in diverse proteins. Here we address this shortcoming and present a method that uses deep mutational scanning to globally map allostery. The approach uses an efficient experimental design to infer en masse the causal biophysical effects of mutations by quantifying multiple molecular phenotypes-here we examine binding and protein abundance-in multiple genetic backgrounds and fitting thermodynamic models using neural networks. We apply the approach to two of the most common protein interaction domains found in humans, an SH3 domain and a PDZ domain, to produce comprehensive atlases of allosteric communication. Allosteric mutations are abundant, with a large mutational target space of network-altering 'edgetic' variants. Mutations are more likely to be allosteric closer to binding interfaces, at glycine residues and at specific residues connecting to an opposite surface within the PDZ domain. This general approach of quantifying mutational effects for multiple molecular phenotypes and in multiple genetic backgrounds should enable the energetic and allosteric landscapes of many proteins to be rapidly and comprehensively mapped.

摘要

蛋白质中远程部位之间的变构通讯是生物调控的核心,但目前仍知之甚少,这限制了人们对其的理解、工程设计和药物研发。造成这种情况的一个重要原因是缺乏全面量化各种蛋白质变构作用的方法。在这里,我们解决了这一不足,并提出了一种使用深度突变扫描全面绘制变构图的方法。该方法采用了一种有效的实验设计,通过量化多个分子表型(在这里我们检查结合和蛋白质丰度)在多个遗传背景下,并使用神经网络拟合热力学模型,大规模推断突变的因果生物物理效应。我们将该方法应用于人类最常见的两种蛋白质相互作用结构域,即 SH3 结构域和 PDZ 结构域,以生成变构通讯的综合图谱。变构突变非常丰富,具有大量改变网络的“边缘”变体的变构靶标空间。突变更有可能在靠近结合界面的位置、甘氨酸残基和 PDZ 结构域中连接到相反表面的特定残基处发生变构。这种用于多种分子表型和多种遗传背景的量化突变效应的通用方法应该能够快速而全面地绘制许多蛋白质的能量和变构景观。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验