State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.
MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
Nature. 2022 Apr;604(7905):377-383. doi: 10.1038/s41586-022-04574-8. Epub 2022 Apr 6.
PIEZO channels respond to piconewton-scale forces to mediate critical physiological and pathophysiological processes. Detergent-solubilized PIEZO channels form bowl-shaped trimers comprising a central ion-conducting pore with an extracellular cap and three curved and non-planar blades with intracellular beams, which may undergo force-induced deformation within lipid membranes. However, the structures and mechanisms underlying the gating dynamics of PIEZO channels in lipid membranes remain unresolved. Here we determine the curved and flattened structures of PIEZO1 reconstituted in liposome vesicles, directly visualizing the substantial deformability of the PIEZO1-lipid bilayer system and an in-plane areal expansion of approximately 300 nm in the flattened structure. The curved structure of PIEZO1 resembles the structure determined from detergent micelles, but has numerous bound phospholipids. By contrast, the flattened structure exhibits membrane tension-induced flattening of the blade, bending of the beam and detaching and rotating of the cap, which could collectively lead to gating of the ion-conducting pathway. On the basis of the measured in-plane membrane area expansion and stiffness constant of PIEZO1 (ref. ), we calculate a half maximal activation tension of about 1.9 pN nm, matching experimentally measured values. Thus, our studies provide a fundamental understanding of how the notable deformability and structural rearrangement of PIEZO1 achieve exquisite mechanosensitivity and unique curvature-based gating in lipid membranes.
PIEZO 通道对皮牛顿级的力作出反应,从而介导关键的生理和病理生理过程。去污剂溶解的 PIEZO 通道形成碗状三聚体,包含一个中央离子通道,带有一个细胞外盖和三个弯曲的非平面叶片,叶片带有细胞内梁,这些梁可能在脂质膜内发生力诱导的变形。然而,脂质膜中 PIEZO 通道门控动力学的结构和机制仍未解决。在这里,我们确定了在脂质体囊泡中重建的 PIEZO1 的弯曲和平坦结构,直接观察到 PIEZO1-脂质双层系统的高变形性和在平坦结构中约 300nm 的平面面积扩张。PIEZO1 的弯曲结构类似于从去污剂胶束中确定的结构,但具有许多结合的磷脂。相比之下,平坦结构表现出膜张力诱导的叶片扁平化、梁弯曲以及盖子的脱离和旋转,这些都可能共同导致离子通道的开启。基于测量的平面膜面积扩张和 PIEZO1 的刚性常数(参考文献),我们计算出半最大激活张力约为 1.9pNnm,与实验测量值相匹配。因此,我们的研究提供了对 PIEZO1 的显著可变形性和结构重排如何实现脂质膜中精细的机械敏感性和独特的基于曲率的门控的基本理解。