Suppr超能文献

使用概率记录链接和倾向评分匹配来确定基于社区的对照人群。

Using probabilistic record linkage and propensity-score matching to identify a community-based comparison population.

机构信息

Child Study Center, Yale School of Medicine, Yale School of Nursing, Yale University, New Haven, Connecticut, USA.

Yale School of Nursing, Yale University, New Haven, Connecticut, USA.

出版信息

Res Nurs Health. 2022 Jun;45(3):390-400. doi: 10.1002/nur.22226. Epub 2022 Apr 6.

Abstract

In retrospective cohort studies of interventions disseminated to communities, it is challenging to find comparison groups with high-quality data for evaluation. We present one methodological approach as part of our study of birth outcomes of second-born children in a home visiting (HV) program targeting first-time mothers. We used probabilistic record linkage to link Connecticut's Nurturing Families Network (NFN) HV program and birth-certificate data for children born from 2005 to 2015. We identified two potential comparison groups: a propensity-score-matched group from the remaining birth certificate sample and eligible-but-unenrolled families. An analysis of interpregnancy interval (IPI) is presented to exemplify the approach. We identified the birth certificates of 4822 NFN families. The propensity-score-matched group had 14,219 families (3-to-1 matching) and we identified 1101 eligible-but-unenrolled families. Covariates were well balanced for the propensity-score-matched group, but poorly balanced for the eligible-but-unenrolled group. No program effect on IPI was found. By combining propensity-score matching and probabilistic record linkage, we were able to retrospectively identify relatively large comparison groups for quasi-experimental research. Using birth certificate data, we accessed outcomes for all of these individuals from a single data source. Multiple comparison groups allow us to confirm findings when each method has some limitations. Other researchers seeking community-based comparison groups could consider a similar approach.

摘要

在针对社区进行干预措施的回顾性队列研究中,找到具有高质量数据的比较组进行评估是具有挑战性的。我们提出了一种方法学方法,作为我们对家庭访问(HV)计划中二胎出生结果研究的一部分,该计划针对的是初次生育的母亲。我们使用概率记录链接将康涅狄格州的培育家庭网络(NFN)HV 计划和 2005 年至 2015 年出生的儿童的出生证明数据进行链接。我们确定了两个潜在的比较组:来自剩余出生证明样本的倾向评分匹配组和符合条件但未注册的家庭。我们分析了妊娠间隔(IPI),以举例说明这种方法。我们确定了 4822 个 NFN 家庭的出生证明。倾向评分匹配组有 14219 个家庭(3:1 匹配),我们确定了 1101 个符合条件但未注册的家庭。对于倾向评分匹配组,协变量得到了很好的平衡,但对于符合条件但未注册的组则平衡较差。没有发现计划对 IPI 的影响。通过结合倾向评分匹配和概率记录链接,我们能够回顾性地为准实验研究确定相对较大的比较组。使用出生证明数据,我们从单个数据源访问了所有这些个体的结果。多个比较组允许我们在每种方法都有一些限制的情况下确认发现。其他寻求基于社区的比较组的研究人员可以考虑类似的方法。

相似文献

本文引用的文献

3
Good Practice Data Linkage (GPD): A Translation of the German Version.良好实践数据链接(GPD):德文版的翻译。
Int J Environ Res Public Health. 2020 Oct 27;17(21):7852. doi: 10.3390/ijerph17217852.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验